Multi-Person Tracking by Discriminative Affinity Model and Hierarchical Association

被引:0
|
作者
Li, Minghua [1 ]
Liu, Zhengxi [1 ]
Xiong, Yunyu [1 ]
Li, Zheng [1 ]
机构
[1] Sichuan Univ, Sch Comp Sci, Chengdu, Sichuan, Peoples R China
来源
PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC) | 2017年
基金
中国国家自然科学基金;
关键词
computer vision; multi-person tracking; data association; affinity model;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Occlusion is probably the most challenging part of multi-person tracking. In this paper, we exploit a new discriminative affinity model which combines deep convolution appearance features, random walk motion model, and object shape to robustly handle occlusion during a long period of time. Moreover, We propose a hierarchical association framework based on the observation that association increase the uncertainty when the object is occluded over time, and decompose a data association problem into several sub-problems. Our approach runs online from a single camera and does not require extra calibration information. Experiments on public Multiple Object Tracking 2016 benchmark datasets show distinct performance improvement compared to state-of-the-art online and batch multi-person tracking methods.
引用
收藏
页码:1741 / 1745
页数:5
相关论文
共 50 条
  • [41] A Distributed Many-Camera System for Multi-person Tracking
    Lenz, Claus
    Roeder, Thorsten
    Eggers, Martin
    Amin, Sikandar
    Kisler, Thomas
    Radig, Bernd
    Panin, Giorgio
    Knoll, Alois
    AMBIENT INTELLIGENCE, 2010, 6439 : 217 - +
  • [42] Temporal dynamic appearance modeling for online multi-person tracking
    Yang, Min
    Jia, Yunde
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 153 : 16 - 28
  • [43] Multi-Person Tracking Using SURF and Background Subtraction for Surveillance
    Yu, Juhee
    Lee, Kyoung-Mi
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2019, 15 (02): : 344 - 358
  • [44] Online Multi-Person Tracking for Intelligent Video Surveillance Systems
    Ju, Jaeyong
    Ku, Bonhwa
    Kim, Daehun
    Song, Taeyup
    Han, David K.
    Ko, Hanseok
    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2015, : 345 - 346
  • [45] Large Scale Real-World Multi-person Tracking
    Shuai, Bing
    Bergamo, Alessandro
    Buechler, Uta
    Berneshawi, Andrew
    Boden, Alyssa
    Tighe, Joseph
    COMPUTER VISION, ECCV 2022, PT VIII, 2022, 13668 : 504 - 521
  • [46] SMPL: A Skinned Multi-Person Linear Model
    Loper, Matthew
    Mahmood, Naureen
    Romero, Javier
    Pons-Moll, Gerard
    Black, Michael J.
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [47] PROBABILISTIC MULTI-PERSON TRACKING USING DYNAMIC BAYES NETWORKS
    Klinger, T.
    Rottensteiner, F.
    Heipke, C.
    ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 435 - 442
  • [48] Real-time multi-person tracking in video surveillance
    Niu, W
    Jiao, L
    Han, D
    Wang, YF
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1144 - 1148
  • [49] Online Multi-Person Tracking using Integral Channel Features
    Kieritz, Hilke
    Becker, Stefan
    Huebner, Wolfgang
    Arens, Michael
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2016, : 122 - 130
  • [50] Single Camera Multi-person Tracking Based on Crowd Simulation
    Jin, Zhixing
    Bhanu, Bir
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3660 - 3663