Two-dimensional gravitating system in optimal Lagrange multiplier approach

被引:0
|
作者
Fa, KS [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a classical two-dimensional gravitating system in the context of Tsallis's statistical mechanics, using optimal Lagrange multiplier (OLM) approach. We obtain, in particular, an exact expression for equation of state of the system. To derive it we also employ the recent generalizations of thermodynamic quantities in Tsallis's formalism advanced by Abe et al. (Phys. Lett. A 281 (2001) 126) in order to adequately identify generalized free energy in our calculation and connect with generalized pressure. We show that our equation of state, in this approach, is independent of the nonextensive parameter q, and is equal to the ordinary result. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:345 / 348
页数:4
相关论文
共 50 条
  • [21] Optimal Nonlinear Income Taxation with a Two-Dimensional Population; A Computational Approach
    Tarkiainen R.
    Tuomala M.
    Computational Economics, 1999, 13 (1) : 1 - 16
  • [22] Two classes of optimal two-dimensional OOCs
    Yuemei Huang
    Yanxun Chang
    Designs, Codes and Cryptography, 2012, 63 : 357 - 363
  • [23] Two classes of optimal two-dimensional OOCs
    Huang, Yuemei
    Chang, Yanxun
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (03) : 357 - 363
  • [24] Optimal Gait Families using Lagrange Multiplier Method
    Choi, Jinwoo
    Bass, Capprin
    Hatton, Ross L.
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8873 - 8878
  • [25] The mixed method with two Lagrange multiplier formulations for the
    Wang, Qi
    Hu, Jingyan
    Zhou, Guanyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 452
  • [26] An analytical formula for the Lagrange time in two-dimensional potential flow
    Hassenpflug, WC
    AERONAUTICAL JOURNAL, 1996, 100 (992): : 75 - 76
  • [27] A two-dimensional continued fraction algorithm with Lagrange and Dirichlet properties
    Drouin, Christian
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (02): : 307 - 346
  • [28] Parabolic variational inequalities: The Lagrange multiplier approach
    Ito, K
    Kunisch, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (03): : 415 - 449
  • [29] Statistical mechanics of unbound two-dimensional self-gravitating systems
    Teles, Tarcisio N.
    Levin, Yan
    Pakter, Renato
    Rizzato, Felipe B.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [30] EXAMPLES OF CONICS ARISING IN TWO-DIMENSIONAL FINSLER AND LAGRANGE GEOMETRIES
    Constantinescu, Oana
    Crasmareanu, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (02): : 45 - 59