3D U-JAPA-Net: Mixture of Convolutional Networks for Abdominal Multi-organ CT Segmentation

被引:25
|
作者
Kakeya, Hideki [1 ]
Okada, Toshiyuki [1 ]
Oshiro, Yukio [2 ]
机构
[1] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[2] Tokyo Med Univ, Ibaraki Med Ctr, Ami, Ibaraki, Japan
关键词
Convolutional neural networks; Deep learning; Transfer learning; U-net; 3D U-net; Multi-organ segmentation; Mixture of experts; MODEL;
D O I
10.1007/978-3-030-00937-3_49
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces a new type of deep learning scheme for fully-automated abdominal multi-organ CT segmentation using transfer learning. Convolutional neural network with 3D U-net is a strong tool to achieve volumetric image segmentation. The drawback of 3D U-net is that its judgement is based only on the local volumetric data, which leads to errors in categorization. To overcome this problem we propose 3D U-JAPA-net, which uses not only the raw CT data but also the probabilistic atlas of organs to reflect the information on organ locations. In the first phase of training, a 3D U-net is trained based on the conventional method. In the second phase, expert 3D U-nets for each organ are trained intensely around the locations of the organs, where the initial weights are transferred from the 3D U-net obtained in the first phase. Segmentation in the proposed method consists of three phases. First rough locations of organs are estimated by probabilistic atlas. Second, the trained expert 3D U-nets are applied in the focused locations. Post-process to remove debris is applied in the final phase. We test the performance of the proposed method with 47 CT data and it achieves higher DICE scores than the conventional 2D U-net and 3D U-net. Also, a positive effect of transfer learning is confirmed by comparing the proposed method with that without transfer learning.
引用
收藏
页码:426 / 433
页数:8
相关论文
共 50 条
  • [1] A Multi-scale Pyramid of 3D Fully Convolutional Networks for Abdominal Multi-organ Segmentation
    Roth, Holger R.
    Shen, Chen
    Oda, Hirohisa
    Sugino, Takaaki
    Oda, Masahiro
    Hayashi, Yuichiro
    Misawa, Kazunari
    Mori, Kensaku
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 417 - 425
  • [2] 2.5D U-Net for Abdominal Multi-organ Segmentation
    Lei, Ruixiang
    Yang, Mingjing
    FAST, LOW-RESOURCE, AND ACCURATE ORGAN AND PAN-CANCER SEGMENTATION IN ABDOMEN CT, FLARE 2023, 2024, 14544 : 76 - 83
  • [3] Hierarchical Multi-Organ Segmentation Without Registration in 3D Abdominal CT Images
    Zografos, Vasileios
    Valentinitsch, Alexander
    Rempfler, Markus
    Tombari, Federico
    Menze, Bjoern
    Medical Computer Vision: Algorithms for Big Data, 2016, 9601 : 37 - 46
  • [4] CT-based Pancreatic Multi-organ Segmentation by a 3D Deep Attention U-Net Network
    Liu, Yingzi
    Lei, Yang
    Fu, Yabo
    Wang, Tonghe
    Tang, Xiangyang
    Tian, Sibo
    Liu, Tian
    Curran, Walter
    Patel, Pretesh
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [5] Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation
    Nurfauzi, Rizki
    Baba, Ayaka
    Nakada, Taka-Aki
    Nakaguchi, Toshiya
    Nomura, Yukihiro
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (02):
  • [6] AUTOMATED MULTI-ORGAN SEGMENTATION IN PET IMAGES USING CASCADED TRAINING OF A 3D U-NET AND CONVOLUTIONAL AUTOENCODER
    Liebgott, Annika
    Lorenz, Charlotte
    Gatidis, Sergios
    Viet Chau Vu
    Nikolaou, Konstantin
    Yang, Bin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1145 - 1149
  • [7] Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks
    Conze, Pierre-Henri
    Kavur, Ali Emre
    Cornec-Le Gall, Emilie
    Gezer, Naciye Sinem
    Le Meur, Yannick
    Selver, M. Alper
    Rousseau, Francois
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 117
  • [8] Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks
    Conze, Pierre-Henri
    Kavur, Ali Emre
    Cornec-Le Gall, Emilie
    Gezer, Naciye Sinem
    Le Meur, Yannick
    Selver, M. Alper
    Rousseau, François
    Conze, Pierre-Henri (pierre-henri.conze@imt-atlantique.fr), 1600, Elsevier B.V. (117):
  • [9] Densely connected deep U-Net for abdominal multi-organ segmentation
    Wang, Zhao-Hui
    Liu, Zhe
    Song, Yu-Qing
    Zhu, Yan
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1415 - 1419
  • [10] Applying 3D U-Net Architecture to the Task of Multi-Organ Segmentation in Computed Tomography
    Radiuk, Pavlo
    APPLIED COMPUTER SYSTEMS, 2020, 25 (01) : 43 - 50