On the spectral radius and the energy of a digraph

被引:7
|
作者
Bozkurt, S. Burcu [1 ]
Bozkurt, Durmus [1 ]
Zhang, Xiao-Dong [2 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Math, Konya, Turkey
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2015年 / 63卷 / 10期
基金
美国国家科学基金会;
关键词
spectral radius of a digraph; energy of a digraph; BOUNDS;
D O I
10.1080/03081087.2014.896358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The energy of a digraph D is defined as E (D) = Sigma(n)(i=1) vertical bar Re (z(i))vertical bar, where z(1), ... , z(n) are the (possibly complex) eigenvalues of D. In this paper, we obtain an improved lower bound on the spectral radius of D. Considering this result, we present an upper bound on the energy of D. We also show that our results generalize and improve some known results for graphs and digraphs.
引用
收藏
页码:2009 / 2016
页数:8
相关论文
共 50 条
  • [21] Bounds on the ABC spectral radius and ABC energy of graphs
    Ghorbani, Modjtaba
    Li, Xueliang
    Hakimi-Nezhaad, Mardjan
    Wang, Junming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 598 : 145 - 164
  • [22] EXTREMAL GRAPHS FOR NORMALIZED LAPLACIAN SPECTRAL RADIUS AND ENERGY
    Das, Kinkar Ch.
    Sun, Shaowei
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 29 : 237 - 253
  • [23] Energy and spectral radius of Zagreb matrix of graph with applications
    Shetty, Shashwath S.
    Bhat, K. Arathi
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2024, 15 (03): : 315 - 324
  • [24] Some sharp bounds for the spectral radius and energy of digraphs
    Liu, Min-Hui
    Tian, Gui-Xian
    Cui, Shu-Yu
    ARS COMBINATORIA, 2016, 127 : 45 - 55
  • [25] On Some new bounds on the spectral radius and the energy of graphs
    Das, Prohelika
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [26] Arithmetic-Geometric Spectral Radius and Energy of Graphs
    Guo, Xin
    Gao, Yubin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (03) : 651 - 660
  • [27] On the spectral radius and energy of the weighted adjacency matrix of a graph
    Xu, Baogen
    Li, Shuchao
    Yu, Rong
    Zhao, Qin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 340 : 156 - 163
  • [28] On the spectral radius and energy of signless Laplacian matrix of digraphs
    Ganie, Hilal A.
    Shang, Yilun
    HELIYON, 2022, 8 (03)
  • [29] Bounds of modified Sombor index, spectral radius and energy
    Huang, Yufei
    Liu, Hechao
    AIMS MATHEMATICS, 2021, 6 (10): : 11263 - 11274
  • [30] On Spectral Radius and Energy of a Graph with Self-Loops
    Vivek Anchan, Deekshitha
    Gowtham, H.J.
    D'Souza, Sabitha
    Mathematical Problems in Engineering, 2024, 2024