Rat umbilical cord blood cells attenuate hypoxic-ischemic brain injury in neonatal rats

被引:26
|
作者
Nakanishi, Keiko [1 ]
Sato, Yoshiaki [2 ]
Mizutani, Yuka [1 ]
Ito, Miharu [2 ]
Hirakawa, Akihiro [3 ]
Higashi, Yujiro [1 ]
机构
[1] Aichi Human Serv Ctr, Inst Dev Res, Dept Perinatol, 713-8 Kagiya Cho, Kasugai, Aichi 4800392, Japan
[2] Nagoya Univ Hosp, Ctr Maternal Neonatal Care, Div Neonatol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668560, Japan
[3] Nagoya Univ Hosp, Ctr Adv Med & Clin Res, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668560, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
STEM-CELLS; BEHAVIORAL DEFICITS; CHONDROITIN SULFATE; CD34(+) CELLS; MOUSE MODEL; DAMAGE; NEUROGENESIS; THERAPY; STROKE; TRANSPLANTATION;
D O I
10.1038/srep44111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic-ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury
    Courtney A. McDonald
    Tayla R. Penny
    Madison C. B. Paton
    Amy E. Sutherland
    Lakshmi Nekkanti
    Tamara Yawno
    Margie Castillo-Melendez
    Michael C. Fahey
    Nicole M. Jones
    Graham Jenkin
    Suzanne L. Miller
    Journal of Neuroinflammation, 15
  • [12] Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury
    McDonald, Courtney A.
    Penny, Tayla R.
    Paton, Madison C. B.
    Sutherland, Amy E.
    Nekkanti, Lakshmi
    Yawno, Tamara
    Castillo-Melendez, Margie
    Fahey, Michael C.
    Jones, Nicole M.
    Jenkin, Graham
    Miller, Suzanne L.
    JOURNAL OF NEUROINFLAMMATION, 2018, 15
  • [13] Estrogen attenuates hypoxic-ischemic brain injury in neonatal rats
    Feng, YZ
    Fratkins, JD
    LeBlanc, MH
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2005, 507 (1-3) : 77 - 86
  • [14] Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats
    Lai, Pei Chun
    Huang, Yen Ta
    Wu, Chia Chen
    Lai, Ching-Jung
    Wang, Pen Jung
    Chiu, Ted H.
    JOURNAL OF BIOMEDICAL SCIENCE, 2011, 18
  • [15] Systemic Evaluation of Hypoxic-Ischemic Brain Injury in Neonatal Rats
    Ai-Hua Zhu
    Yan-Rong Hu
    Wei Liu
    Feng Gao
    Jian-Xin Li
    Li-Hui Zhao
    Gang Chen
    Cell Biochemistry and Biophysics, 2014, 69 : 295 - 301
  • [16] Neuroprotection of edaravone on hypoxic-ischemic brain injury in neonatal rats
    Yasuoka, N
    Nakajima, W
    Ishida, A
    Takada, G
    DEVELOPMENTAL BRAIN RESEARCH, 2004, 151 (1-2): : 129 - 139
  • [17] Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats
    Pei Chun Lai
    Yen Ta Huang
    Chia Chen Wu
    Ching-Jung Lai
    Pen Jung Wang
    Ted H Chiu
    Journal of Biomedical Science, 18
  • [18] Effect of oxymatrine on hypoxic-ischemic brain injury in neonatal rats
    Wei, Chao
    Zhao, Shujing
    Diao, Ruiqing
    He, Liang
    Wang, Weizhan
    Li, Aihuan
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2021, 20 (06) : 1211 - 1216
  • [19] Systemic Evaluation of Hypoxic-Ischemic Brain Injury in Neonatal Rats
    Zhu, Ai-Hua
    Hu, Yan-Rong
    Liu, Wei
    Gao, Feng
    Li, Jian-Xin
    Zhao, Li-Hui
    Chen, Gang
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2014, 69 (02) : 295 - 301
  • [20] EFFECTS OF DEXAMETHASONE IN HYPOXIC-ISCHEMIC BRAIN INJURY IN THE NEONATAL RAT
    ALTMAN, DI
    YOUNG, RSK
    YAGEL, SK
    BIOLOGY OF THE NEONATE, 1984, 46 (03): : 149 - 156