Implementation of Filter Method to Solve the Kronig-Penney Model

被引:0
|
作者
Abdurrouf [1 ]
Pamungkas, M. A. [1 ]
Wiyono [1 ]
Nurhuda, M. [1 ]
机构
[1] Brawijaya Univ, Dept Phys, Jl Vet Malang, Malang 65145, Indonesia
关键词
D O I
10.1063/5.0008147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigates the solution of Schrodinger equation for Kronig-Penney potential, by using our newly developed filter method ( Phys. Rev E 96(3), 033302 (2017)). The method enables us to obtain energy spectrum and their corresponding eigen function, for various number of lattices, width of lattice, width ratio between potential barrier and potential well, and the height of barrier. It was obtained that the numerical results well agree with the analytic solutions.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] EFFECTIVE MASS NOTION IN RELATIVISTIC KRONIG-PENNEY MODEL
    KANDILAROV, BD
    DETCHEVA, V
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1976, 9 (05): : L107 - L109
  • [42] KRONIG-PENNEY MODEL TREATMENT OF PHOTOEMISSION FROM SILICON
    THAPA, RK
    KAR, N
    SURFACE SCIENCE, 1995, 338 (1-3) : 138 - 142
  • [43] The tight-binding formulation of the Kronig-Penney model
    Marsiglio, F.
    Pavelich, R. L.
    SCIENTIFIC REPORTS, 2017, 7
  • [44] The Kronig-Penney Model with Adaptive Plane Wave Basis
    Gordienko, A. B.
    Kabanov, Yu V.
    RUSSIAN PHYSICS JOURNAL, 2013, 55 (10) : 1232 - 1234
  • [45] NEW FORMALISM OF THE KRONIG-PENNEY MODEL WITH APPLICATION TO SUPERLATTICES
    CHO, HS
    PRUCNAL, PR
    PHYSICAL REVIEW B, 1987, 36 (06): : 3237 - 3242
  • [46] The tight-binding formulation of the Kronig-Penney model
    F. Marsiglio
    R. L. Pavelich
    Scientific Reports, 7
  • [47] Kronig-Penney model of scalar and vector potentials in graphene
    Masir, M. Ramezani
    Vasilopoulos, P.
    Peeters, F. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (46)
  • [48] Diffraction in time in a Kronig-Penney lattice
    Monsivais, G
    Moshinsky, M
    Loyola, G
    PHYSICA SCRIPTA, 1996, 54 (02): : 216 - 224
  • [49] GENERAL FORMALISM OF THE KRONIG-PENNEY MODEL SUITABLE FOR SUPERLATTICE APPLICATIONS
    PAN, SH
    FENG, SM
    PHYSICAL REVIEW B, 1991, 44 (11): : 5668 - 5671
  • [50] OPTICAL ABSORPTION IN A KRONIG-PENNEY SEMICONDUCTOR
    WILSEY, ND
    GOODMAN, RR
    AMERICAN JOURNAL OF PHYSICS, 1967, 35 (01) : 35 - +