Non-coercive Lyapunov-Krasovskii functionals for exponential stability of time-varying delay systems: a switched system approach

被引:1
|
作者
Haidar, Ihab [1 ]
机构
[1] ENSEA, Lab Quartz EA 7393, Cergy Pontoise, France
关键词
Time-delay systems; switched systems; Lyapunov-Krasovskii functionals; exponential stability;
D O I
10.1109/ICSC57768.2022.9993945
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with a class of time-varying delay systems. We show that the existence of a non-coercive Lyapunov-Krasovskii functional is necessary and sufficient for local exponential stability. This result extends what is recently given in [3] for globally Lipschitz systems to a class of locally Lipschitz systems. A switched system approach is used to elaborate this result.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 50 条
  • [31] Exponential stability analysis of neural networks with a time-varying delay via a generalized Lyapunov-Krasovskii functional method
    Li, Xu
    Liu, Haibo
    Liu, Kuo
    Li, Te
    Wang, Yongqing
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (03) : 716 - 732
  • [32] Stability of Linear Discrete Time Delay Systems: Lyapunov-Krasovskii Approach
    Stojanovic, S. B.
    Debeljkovic, D. Lj.
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 2488 - +
  • [33] Stability of Teleoperation Systems for time-varying delays by Lyapunov-Krasovskii and Frequencial Techniques
    Delgado, Emma
    Barreiro, Antonio
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 1635 - +
  • [34] An Augmented Lyapunov-Krasovskii Functional Approach to Analyze Stability of T-S Fuzzy Systems With Time-Varying Delay
    Yang, Jiaxiu
    Zhu, Shuqian
    Wang, Tian-Bao
    2018 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2018, : 65 - 68
  • [35] A new augmented Lyapunov-Krasovskii functional approach for stability of linear systems with time-varying delays
    Park, M. J.
    Kwon, O. M.
    Park, Ju H.
    Lee, S. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (17) : 7197 - 7209
  • [36] Lyapunov-Krasovskii functionals for homogeneous time delay systems of neutral type
    Alexandrova, Irina, V
    Zhabko, Alexey P.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (06) : 3251 - 3265
  • [37] Lyapunov-Krasovskii functionals for linear systems with input delay
    Aliseyko, A. N.
    Kharitonov, V. L.
    IFAC PAPERSONLINE, 2019, 52 (18): : 19 - 24
  • [38] Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems
    Gu, KQ
    KYBERNETIKA, 2001, 37 (04) : 479 - 504
  • [39] Stability of time-delay system with time-varying uncertainties via homogeneous polynomial Lyapunov-Krasovskii functions
    Pang G.-C.
    Zhang K.-J.
    International Journal of Automation and Computing, 2015, 12 (6) : 657 - 663
  • [40] Stability of Time-delay System with Time-varying Uncertainties via Homogeneous Polynomial Lyapunov-Krasovskii Functions
    Guo-Chen Pang
    Kan-Jian Zhang
    International Journal of Automation and Computing, 2015, (06) : 657 - 663