Large deviations for local mass of branching Brownian motion

被引:6
|
作者
Oz, Mehmet [1 ]
机构
[1] Ozyegin Univ, Dept Nat & Math Sci, TR-34794 Istanbul, Turkey
关键词
Branching Brownian motion; Large deviations; Local mass; Local growth; LIMIT-THEOREMS; EQUATION; GROWTH; SPEED;
D O I
10.30757/ALEA.v17-27
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the local mass of a dyadic branching Brownian motion Z evolving in R-d. By 'local mass', we refer to the number of particles of Z that fall inside a ball with fixed radius and time-dependent center, lying in the region where there is typically exponential growth of particles. Using the strong law of large numbers for the local mass of branching Brownian motion and elementary geometric arguments, we find large deviation results giving the asymptotic behavior of the probability that the local mass is atypically small on an exponential scale. As corollaries, we obtain an asymptotic result for the probability of absence of Z in a ball with fixed radius and time-dependent center, and lower tail asymptotics for the local mass in a fixed ball. The proofs are based on a bootstrap argument, which we use to find the lower tail asymptotics for the mass outside a ball with time-dependent radius and fixed center, as well.
引用
收藏
页码:711 / 731
页数:21
相关论文
共 50 条
  • [41] Annihilating Branching Brownian Motion
    Ahlberg, Daniel
    Angel, Omer
    Kolesnik, Brett
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10425 - 10448
  • [42] Branching Brownian Motion with Catalytic Branching at the Origin
    Bocharov, Sergey
    Harris, Simon C.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 201 - 228
  • [43] Hyperbolic branching Brownian motion
    Steven P. Lalley
    Tom Sellke
    Probability Theory and Related Fields, 1997, 108 : 171 - 192
  • [44] Hyperbolic branching Brownian motion
    Lalley, SP
    Sellke, T
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 171 - 192
  • [45] Branching Brownian Motion with Catalytic Branching at the Origin
    Sergey Bocharov
    Simon C. Harris
    Acta Applicandae Mathematicae, 2014, 134 : 201 - 228
  • [46] On the density of branching Brownian motion
    Oz, Mehmet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01): : 229 - 247
  • [47] Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift
    Berestycki, Julien
    Brunet, Eric
    Harris, Simon C.
    Milos, Piotr
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (06) : 2107 - 2143
  • [48] Quenched law of large numbers for branching Brownian motion in a random medium
    Englander, Janos
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03): : 490 - 518
  • [49] A simple backward construction of branching Brownian motion with large displacement and applications
    Berestycki, Julien
    Brunet, Eric
    Cortines, Aser
    Mallein, Bastien
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2094 - 2113
  • [50] Large deviations for the growth rate of the support of supercritical super-Brownian motion
    Engländer, J
    STATISTICS & PROBABILITY LETTERS, 2004, 66 (04) : 449 - 456