Linear coloring of graphs embeddable in a surface of nonnegative characteristic

被引:15
|
作者
Wang WeiFan [1 ]
Li Chao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 05期
基金
中国国家自然科学基金;
关键词
linear coloring; graph of nonnegative characteristic; girth; maximum degree;
D O I
10.1007/s11425-008-0143-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree Delta(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = [Delta(G)/2] + 1 if there is a pair (Delta, g) is an element of {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies Delta(G) >= Delta and g(G) >= g.
引用
收藏
页码:991 / 1003
页数:13
相关论文
共 50 条
  • [41] THE DISSIMILARITY CHARACTERISTIC OF LINEAR GRAPHS
    HARARY, F
    NORMAN, RZ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (01) : 131 - 135
  • [42] Sequentially embeddable graphs
    Autry, Jackson
    O'Neill, Christopher
    JOURNAL OF GRAPH THEORY, 2020, 95 (01) : 27 - 33
  • [43] On a Conjecture of Embeddable Graphs
    PENG Yanling
    WANG Hong
    WuhanUniversityJournalofNaturalSciences, 2021, 26 (02) : 123 - 127
  • [44] Class I graphs of nonnegative characteristic without special cycles
    Dan-jun Huang
    Wei-fan Wang
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 320 - 328
  • [45] On structure of graphs embedded on surfaces of nonnegative characteristic with application to choosability
    Xu, BG
    DISCRETE MATHEMATICS, 2002, 248 (1-3) : 283 - 291
  • [46] Approximating the Crossing Number of Graphs Embeddable in Any Orientable Surface
    Hlineny, Petr
    Chimani, Markus
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 918 - +
  • [47] Class I graphs of nonnegative characteristic without special cycles
    Huang Dan-jun
    Wang Wei-fan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) : 320 - 328
  • [48] NONNEGATIVE RICCI CURVATURE AND MINIMAL GRAPHS WITH LINEAR GROWTH
    Colombo, Giulio
    Gama, Eddygledson S.
    Mari, Luciano
    Rigoli, Marco
    ANALYSIS & PDE, 2024, 17 (07):
  • [49] New Upper Bounds on Linear Coloring of Planar Graphs
    Bin LIU
    Gui Zhen LIU
    Acta Mathematica Sinica,English Series, 2012, (06) : 1187 - 1196
  • [50] On the parameterized complexity of coloring graphs in the absence of a linear forest
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 15 : 56 - 62