A TIGHT BOUND ON THE SET CHROMATIC NUMBER

被引:2
|
作者
Sereni, Jean-Sebastien [1 ]
Yilma, Zelealem B. [2 ]
机构
[1] Univ Diderot, LORIA, CNRS, Nancy, France
[2] Addis Ababa Univ, Dept Math, Addis Ababa, Ethiopia
关键词
chromatic number; set coloring; set chromatic number; neighbor; distinguishing coloring;
D O I
10.7151/dmgt.1679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that chi(s)(G) equal to or greater than inverted right perpendicularlog(2) chi(G)inverted left perpendicular + 1, where chi(s)(G) and chi(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
引用
收藏
页码:461 / 465
页数:5
相关论文
共 50 条
  • [31] ON AN UPPER BOUND FOR THE HARMONIOUS CHROMATIC NUMBER OF A GRAPH
    LU, ZK
    JOURNAL OF GRAPH THEORY, 1991, 15 (04) : 345 - 347
  • [32] A NEW UPPER BOUND FOR THE LIST CHROMATIC NUMBER
    BOLLOBAS, B
    HIND, HR
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 65 - 75
  • [33] A new upper bound for the harmonious chromatic number
    Edwards, K
    JOURNAL OF GRAPH THEORY, 1998, 29 (04) : 257 - 261
  • [34] Upper bound on the circular chromatic number of the plane
    Junosza-Szaniawski, Konstanty
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [35] Reexploring the upper bound for the chromatic number of graphs
    Li, SC
    Mao, JZ
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (03) : 276 - 278
  • [36] New Eigenvalue Bound for the Fractional Chromatic Number
    Guo, Krystal
    Spiro, Sam
    arXiv, 2022,
  • [37] A new bound on the acyclic edge chromatic number
    Fialho, Paula M. S.
    de Lima, Bernardo N. B.
    Procacci, Aldo
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [38] An inertial lower bound for the chromatic number of a graph
    Elphick, Clive
    Wocjan, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [39] An upper bound for the chromatic number of line graphs
    King, A. D.
    Reed, B. A.
    Vetta, A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (08) : 2182 - 2187
  • [40] ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS
    ERDOS, P
    HAJNAL, A
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2): : 61 - &