A TIGHT BOUND ON THE SET CHROMATIC NUMBER

被引:2
|
作者
Sereni, Jean-Sebastien [1 ]
Yilma, Zelealem B. [2 ]
机构
[1] Univ Diderot, LORIA, CNRS, Nancy, France
[2] Addis Ababa Univ, Dept Math, Addis Ababa, Ethiopia
关键词
chromatic number; set coloring; set chromatic number; neighbor; distinguishing coloring;
D O I
10.7151/dmgt.1679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that chi(s)(G) equal to or greater than inverted right perpendicularlog(2) chi(G)inverted left perpendicular + 1, where chi(s)(G) and chi(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
引用
收藏
页码:461 / 465
页数:5
相关论文
共 50 条
  • [1] An asymptotically tight bound on the adaptable chromatic number
    Molloy, Michael
    Thron, Giovanna
    JOURNAL OF GRAPH THEORY, 2012, 71 (03) : 331 - 351
  • [2] The most congested cutset: Deriving a tight lower bound for the chromatic number in the RWA problem
    Sharafat, AR
    Ma'rouzi, OR
    IEEE COMMUNICATIONS LETTERS, 2004, 8 (07) : 473 - 475
  • [3] A bound on the total chromatic number
    Molloy, M
    Reed, B
    COMBINATORICA, 1998, 18 (02) : 241 - 280
  • [4] BOUND FOR CHROMATIC NUMBER OF A GRAPH
    VANNUFFELEN, C
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (04): : 265 - 266
  • [5] A Bound on the Total Chromatic Number
    Michael Molloy
    Bruce Reed
    Combinatorica, 1998, 18 : 241 - 280
  • [6] Tight Bounds on the Clique Chromatic Number
    Joret, Gwenael
    Micek, Piotr
    Reed, Bruce
    Smid, Michiel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [7] On the chromatic number of set systems
    Kostochka, A
    Mubayi, D
    Rödl, V
    Tetali, P
    RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (02) : 87 - 98
  • [8] A bound for the game chromatic number of graphs
    Dinski, T
    Zhu, XD
    DISCRETE MATHEMATICS, 1999, 196 (1-3) : 109 - 115
  • [9] A new bound on the cyclic chromatic number
    Sanders, DP
    Zhao, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (01) : 102 - 111
  • [10] Playing a Game to Bound the Chromatic Number
    Panagopoulou, Panagiota N.
    Spirakis, Paul G.
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (09): : 771 - 778