Nucleation of polypropylene crystallization by single-walled carbon nanotubes

被引:312
|
作者
Grady, BP [1 ]
Pompeo, F [1 ]
Shambaugh, RL [1 ]
Resasco, DE [1 ]
机构
[1] Univ Oklahoma, Dept Chem Engn & Mat Sci, Norman, OK 73019 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2002年 / 106卷 / 23期
关键词
D O I
10.1021/jp014622y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonisothermal and isothermal crystallization experiments were performed on polypropylene mixed with carbon nanotubes produced by disproportionation of CO on Co-Mo catalysts. Functionalization of the nanotubes with octadecylamine made the tubes hydrophobic and allowed the tubes to be solubilized in an organic solvent. Mixing of the nanotubes with the polymer was accomplished by adding the nanotubes to a Decalin solution that contained dissolved polypropylene, followed by evaporation of the solvent. Dynamic mechanical analysis indicated very little difference in the small-strain mechanical properties between filled and unfilled polymers at the very low solid levels that were tested. By contrast, the crystallization behavior of the filled and unfilled polymer was quite different. Nanotubes promoted growth of the less-preferred beta form of crystalline polypropylene at the expense of the alpha form. In nonisothermal crystallization, the total amount of crystalline material in the sample was the same for the filled and unfilled materials. However, for isothermal crystallization experiments, the percent crystallinity in the filled materials was slightly higher. Most importantly, the rate of crystallization was substantially higher in the filled system. The results presented in this paper clearly show that carbon nanotubes nucleate crystallinity in polypropylene.
引用
收藏
页码:5852 / 5858
页数:7
相关论文
共 50 条
  • [41] Toxicity of single-walled carbon nanotubes
    Li-Chu Ong
    Felicia Fei-Lei Chung
    Yuen-Fen Tan
    Chee-Onn Leong
    Archives of Toxicology, 2016, 90 : 103 - 118
  • [42] Rings of single-walled carbon nanotubes
    Richard Martel
    Herbert R. Shea
    Phaedon Avouris
    Nature, 1999, 398 : 299 - 299
  • [43] Solvatochromism in single-walled carbon nanotubes
    Choi, Jong Hyun
    Strano, Michael S.
    APPLIED PHYSICS LETTERS, 2007, 90 (22)
  • [44] On the mechanics of single-walled carbon nanotubes
    Zhang, L. C.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (09) : 4223 - 4228
  • [45] Dissolution of single-walled carbon nanotubes
    Hamon, MA
    Chen, J
    Hu, H
    Chen, YS
    Itkis, ME
    Rao, AM
    Eklund, PC
    Haddon, RC
    ADVANCED MATERIALS, 1999, 11 (10) : 834 - +
  • [46] Coalescence of single-walled carbon nanotubes
    Terrones, M
    Terrones, H
    Banhart, F
    Charlier, JC
    Ajayan, PM
    SCIENCE, 2000, 288 (5469) : 1226 - 1229
  • [47] Localization in single-walled carbon nanotubes
    Fuhrer, M.S.
    Cohen, Marvin L.
    Zettl, A.
    Crespi, Vincent
    Solid State Communications, 1998, 109 (02): : 105 - 109
  • [48] Antioxidant single-walled carbon nanotubes
    Departments of Chemistry and Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005, United States
    不详
    J. Am. Chem. Soc., 2009, 11 (3934-3941):
  • [49] Conductivity of Single-Walled Carbon Nanotubes
    Gets, A. V.
    Krainov, V. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 123 (06) : 1084 - 1089
  • [50] On diffusion of single-walled carbon nanotubes
    V. Ya. Rudyak
    D. S. Tretiakov
    Thermophysics and Aeromechanics, 2020, 27 : 847 - 855