long-read-tools.org: an interactive catalogue of analysis methods for long-read sequencing data

被引:24
|
作者
Amarasinghe, Shanika L. [1 ,2 ]
Ritchie, Matthew E. [1 ,2 ,3 ]
Gouil, Quentin [1 ,2 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Epigenet & Dev Div, 1G Royal Parade, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Dept Med Biol, 1G Royal Parade, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Sch Math & Stat, 813 Swanston St, Parkville, Vic 3010, Australia
来源
GIGASCIENCE | 2021年 / 10卷 / 02期
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
database; long-read sequencing; data analysis; nanopore; PacBio; ALIGNMENT; RNA;
D O I
10.1093/gigascience/giab003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The data produced by long-read third-generation sequencers have unique characteristics compared to short-read sequencing data, often requiring tailored analysis tools for tasks ranging from quality control to downstream processing. The rapid growth in software that addresses these challenges for different genomics applications is difficult to keep track of, which makes it hard for users to choose the most appropriate tool for their analysis goal and for developers to identify areas of need and existing solutions to benchmark against. Findings: We describe the implementation of long-read-tools.org, an open-source database that organizes the rapidly expanding collection of long-read data analysis tools and allows its exploration through interactive browsing and filtering. The current database release contains 478 tools across 32 categories. Most tools are developed in Python, and the most frequent analysis tasks include base calling, de novo assembly, error correction, quality checking/filtering, and isoform detection, while long-read single-cell data analysis and transcriptomics are areas with the fewest tools available. Conclusion: Continued growth in the application of long-read sequencing in genomics research positions the long-read-tools.org database as an essential resource that allows researchers to keep abreast of both established and emerging software to help guide the selection of the most relevant tool for their analysis needs.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Genomics in the long-read sequencing era
    van Dijk, Erwin L.
    Naquin, Delphine
    Gorrichon, Kevin
    Jaszczyszyn, Yan
    Ouazahrou, Rania
    Thermes, Claude
    Hernandez, Celine
    TRENDS IN GENETICS, 2023, 39 (09) : 649 - 671
  • [12] Long-read sequencing for brain tumors
    Shelton, William J.
    Zandpazandi, Sara
    Nix, J. Stephen
    Gokden, Murat
    Bauer, Michael
    Ryan, Katie Rose
    Wardell, Christopher P.
    Vaske, Olena Morozova
    Rodriguez, Analiz
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [13] Long-read sequencing in human genetics
    Kraft, Florian
    Kurth, Ingo
    MEDIZINISCHE GENETIK, 2019, 31 (02) : 198 - 204
  • [14] Method of the year: long-read sequencing
    Marx, Vivien
    NATURE METHODS, 2023, 20 (01) : 6 - 11
  • [15] Reimagining Long-Read DNA Sequencing
    不详
    CHEMICAL ENGINEERING PROGRESS, 2017, 113 (10) : 28 - 28
  • [16] Long-read sequencing in fungal identification
    Hoang, Minh Thuy Vi
    Irinyi, Laszlo
    Meyer, Wieland
    MICROBIOLOGY AUSTRALIA, 2022, 43 (01) : 14 - 18
  • [17] Transcriptomics in the era of long-read sequencing
    Monzo, Carolina
    Liu, Tianyuan
    Conesa, Ana
    NATURE REVIEWS GENETICS, 2025,
  • [18] Long-read sequencing goes clinical
    Neveling, K.
    Derks, R.
    Kwint, M.
    van de Vorst, M.
    Gardeitchik, T.
    Nelen, M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 516 - 516
  • [19] Genome sequencing using long-read sequencing
    McEwen, Juan Guillermo
    Gomez, Oscar Mauricio
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (183): : 439 - 444
  • [20] Method of the year: long-read sequencing
    Vivien Marx
    Nature Methods, 2023, 20 : 6 - 11