SOME EXTENSIONS OF THE CLASS OF k-CONVEX BODIES

被引:1
|
作者
Golubyatnikov, V. P. [1 ]
Rovenski, V. Yu. [2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Univ Haifa, IL-31999 Haifa, Israel
关键词
k-convex body; k-visible body; supporting ball; circular projection; visual hull; geometric tomography; VISUAL HULLS; PROJECTIONS; SETS;
D O I
10.1007/s11202-009-0092-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study interrelations between some classes of bodies in Euclidean spaces. We introduce circular projections in normed linear spaces and the classes of bodies related with some families of these projections. Investigation of these bodies more general than k-convex and k-visible bodies allows us to generalize some classical results of geometric tomography and find their new applications.
引用
收藏
页码:820 / 829
页数:10
相关论文
共 50 条
  • [1] Some extensions of the class of k-convex bodies
    V. P. Golubyatnikov
    V. Yu. Rovenski
    Siberian Mathematical Journal, 2009, 50 : 820 - 829
  • [2] On k-convex polygons
    Aichholzer, Oswin
    Aurenhammer, Franz
    Demaine, Erik D.
    Hurtado, Ferran
    Ramos, Pedro
    Urrutia, Jorge
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2012, 45 (03): : 73 - 87
  • [3] On k-convex point sets
    Aichholzer, Oswin
    Aurenhammer, Franz
    Hackl, Thomas
    Hurtado, Ferran
    Pilz, Alexander
    Ramos, Pedro
    Urrutia, Jorge
    Valtr, Pavel
    Vogtenhuber, Birgit
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (08): : 809 - 832
  • [4] Counting k-convex polyominoes
    Micheli, Anne
    Rossin, Dominique
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [5] ℱK-convex functions on metric spaces
    Stephanie Alexander
    Richard L. Bishop
    manuscripta mathematica, 2003, 110 : 115 - 133
  • [6] Some properties of K-convex mappings in variable ordering settings
    Bouza Allende, Gemayqzel
    Hernandez Escobar, Daniel
    Ruckmann, Jan-J.
    OPTIMIZATION, 2022, 71 (14) : 4125 - 4146
  • [7] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88
  • [8] The number of directed k-convex polyominoes
    Boussicault, A.
    Rinaldi, S.
    Socci, S.
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [9] HYPERBOLIC GEOMETRY IN K-CONVEX REGIONS
    MEJIA, D
    MINDA, D
    PACIFIC JOURNAL OF MATHEMATICS, 1990, 141 (02) : 333 - 354
  • [10] HYPERBOLIC CURVATURE AND K-CONVEX FUNCTIONS
    Song, Tai Sung
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2006, 13 (02): : 151 - 155