ℱK-convex functions on metric spaces

被引:0
|
作者
Stephanie Alexander
Richard L. Bishop
机构
[1] Department of Mathematics,
[2] University of Illinois,undefined
[3] Urbana,undefined
[4] IL 61801,undefined
[5] USA. e-mail: sba@math.uiuc.edu,undefined
[6] Department of Mathematics,undefined
[7] University of Illinois,undefined
[8] Urbana,undefined
[9] IL 61801,undefined
[10] USA. e-mail: bishop@math.uiuc.edu,undefined
来源
manuscripta mathematica | 2003年 / 110卷
关键词
Approximation Theorem; Lipschitz Extension;
D O I
暂无
中图分类号
学科分类号
摘要
 By an ℱK-convex function on a length metric space, we mean one that satisfies fn ≥ −Kf on all unitspeed geodesics. We show that natural ℱK-convex (-concave) functions occur in abundance on metric spaces of curvature bounded above (below) by K in the sense of Alexandrov. We prove Lipschitz extension and approximation theorems for ℱK-convex functions on CAT(K) spaces.
引用
收藏
页码:115 / 133
页数:18
相关论文
共 50 条