Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms

被引:10
|
作者
Liskevich, Vitali [1 ]
Skrypnik, Igor I. [2 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
关键词
Equations with nonstandard growth conditions; Harnack inequality; Continuity; Nonlinear Kato-class;
D O I
10.1007/s10231-009-0111-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the Harnack inequality and continuity of solutions for a general class of divergence-type elliptic equations with nonstandard growth measurable coefficients in the main part and lower order terms from nonlinear Kato-type classes.
引用
收藏
页码:335 / 356
页数:22
相关论文
共 50 条
  • [21] Positive solutions to semilinear elliptic equations with critical lower order terms
    Liskevich, V
    Lyakhova, S
    Moroz, V
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 549 - 554
  • [22] Estimates for solutions to nonlinear degenerate elliptic equations with lower order terms
    Maria Francesca Betta
    Adele Ferone
    Gabriella Paderni
    Ricerche di Matematica, 2020, 69 : 367 - 384
  • [23] Estimates for solutions to nonlinear degenerate elliptic equations with lower order terms
    Betta, Maria Francesca
    Ferone, Adele
    Paderni, Gabriella
    RICERCHE DI MATEMATICA, 2020, 69 (01) : 367 - 384
  • [24] Singular solutions of elliptic equations with nonstandard growth
    Lukkari, Teemu
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) : 1770 - 1787
  • [25] Nonlocal Harnack inequality for fractional elliptic equations with Orlicz growth
    Byun, Sun-Sig
    Kim, Hyojin
    Song, Kyeong
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) : 2382 - 2399
  • [26] H lder Continuity of Weak Solutions for Parabolic Equations with Nonstandard Growth Conditions
    Meng XU
    Ya Zhe CHEN
    Acta Mathematica Sinica(English Series), 2006, 22 (03) : 793 - 806
  • [27] Hölder Continuity of Weak Solutions for Parabolic Equations with Nonstandard Growth Conditions
    Meng Xu
    Ya Zhe Chen
    Acta Mathematica Sinica, 2006, 22 : 793 - 806
  • [28] Harnack inequality for a class of second-order degenerate elliptic equations
    Yu. A. Alkhutov
    E. A. Khrenova
    Proceedings of the Steklov Institute of Mathematics, 2012, 278 : 1 - 9
  • [29] On the Harnack inequality for quasilinear elliptic equations with a first-order term
    Merchan, Susana
    Montoro, Luigi
    Sciunzi, Berardino
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (05) : 1075 - 1095
  • [30] Harnack inequality for a class of second-order degenerate elliptic equations
    Alkhutov, Yu A.
    Khrenova, E. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 278 (01) : 1 - 9