Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms

被引:32
|
作者
Pyo, Soonjae [1 ]
Kwon, Dae-Sung [2 ]
Ko, Hee-Jin [2 ]
Eun, Youngkee [3 ]
Kim, Jongbaeg [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Korea Inst Ind Technol KITECH, 143 Hanggaul Ro, Ansan 15588, South Korea
基金
新加坡国家研究基金会;
关键词
Energy harvester; Hybrid; Piezoelectric; Electromagnetic; Frequency up‐ conversion;
D O I
10.1007/s40684-021-00321-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A hybrid energy harvester with frequency up-conversion structures is proposed. The harvester achieves a high power output by utilizing both piezoelectric and electromagnetic transduction mechanisms. The harvester comprises a flexible substrate and two (internal and external) cantilevers. The internal and external cantilevers used for piezoelectric and electromagnetic conversion, respectively, are arranged such that the piezoelectric internal cantilever can vibrate with a large displacement to produce high output power. We use a frequency up-conversion method to convert the bending of the harvester into the vibration of the structure so that the harvester can generate energy even from the mechanical motion with an extremely low frequency. Two harvester configurations are investigated to validate the effect of the relative positions of the coil and magnet on the output voltage of the harvester. The maximum power output of the hybrid harvester is 7.38 mW, with outputs of 1.35 and 6.03 mW for piezoelectric and electromagnetic conversion, respectively.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [21] A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors
    Liu, Huicong
    Tay, Cho Jui
    Quan, Chenggen
    Kobayashi, Takeshi
    Lee, Chengkuo
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2011, 17 (12): : 1747 - 1754
  • [22] A Piezoelectric Wave Energy Harvester Using Plucking-Driven and Frequency Up-Conversion Mechanism
    Chen, Shao-En
    Yang, Ray-Yeng
    Qiu, Zeng-Hui
    Wu, Chia-Che
    ENERGIES, 2021, 14 (24)
  • [23] A Frequency Up-Conversion Piezoelectric Energy Harvester Shunted to a Synchronous Electric Charge Extraction Circuit
    Peng, Xuzhang
    Tang, Hao
    Li, Zhongjie
    Liang, Junrui
    Yu, Liuding
    Hu, Guobiao
    MICROMACHINES, 2024, 15 (07)
  • [24] Hybrid Vibration Energy Harvester Based On Piezoelectric and Electromagnetic Transduction Mechanism
    Ab Rahman, Mohd Fauzi
    Kok, Swee Leong
    Ali, Noraini Mat
    Hamzah, Rostam Affendi
    Aziz, Khairul Azha A.
    2013 IEEE CONFERENCE ON CLEAN ENERGY AND TECHNOLOGY (CEAT), 2013, : 243 - 247
  • [25] Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms
    Xu, Zhenlong
    Shan, Xiaobiao
    Yang, Hong
    Wang, Wen
    Xie, Tao
    MICROMACHINES, 2017, 8 (06):
  • [26] A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method
    Zorlu, Ozge
    Topal, Emre Tan
    Kulah, Haluk
    IEEE SENSORS JOURNAL, 2011, 11 (02) : 481 - 488
  • [27] An electromagnetic energy harvester capable of frequency up-conversion and amplitude amplification under pulse excitation
    Zhu, D.
    Evans, L.
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052
  • [28] A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms
    Wang, Hong-yan
    Tang, Li-hua
    Guo, Yuan
    Shan, Xiao-biao
    Xie, Tao
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2014, 15 (09): : 711 - 722
  • [29] Periodic Solutions of an Impact-Driven Frequency Up-Conversion Piezoelectric Harvester
    Abedini, Amin
    Onsorynezhad, Saeed
    Wang, Fengxia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (10):
  • [30] Array piezoelectric energy harvester with frequency up-conversion in rotational motions: theoretical analyses and experimental validations
    Mei, Xutao
    Dong, Ruihong
    Sun, Feng
    Zhou, Ran
    Zhou, Shengxi
    NONLINEAR DYNAMICS, 2023, 111 (11) : 9989 - 10009