convex cones;
critical angles;
angular spectra;
cantor ternary set;
D O I:
10.1080/02331930600819985
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
This note deals with some cardinality issues concerning the set of critical angles of a convex cone K subset of R-d. Such set is referred to as the angular spectrum of the cone. In a recent work of ours, it has been shown that the angular spectrum of a polyhedral cone is necessarily finite and that its cardinality can grow at most polynomially with respect to the number of generators. In this note, we explore the case of nonpolyhedral cones. More specifically, we construct a cone whose angular spectrum is infinite (but possibly countable), and, what is harder to achieve, we construct a cone with noncountable angular spectrum. The construction procedure is highly technical in both cases, but the obtained results are useful for better understanding why some convex cones exhibit such a complicated angular structure.
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
North China Univ Technol, Coll Sci, Beijing 100144, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
Sun, Mingzheng
Su, Jiabao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
Su, Jiabao
Zhao, Leiga
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China