High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture

被引:145
|
作者
Chawade, Aakash [1 ]
van Ham, Joost [2 ]
Blomquist, Hanna [3 ]
Bagge, Oscar [3 ]
Alexandersson, Erik [4 ]
Ortiz, Rodomiro [1 ]
机构
[1] Swedish Univ Agr Sci SLU, Dept Plant Breeding, SE-23053 Alnarp, Sweden
[2] Lund Univ, Dept Biol, SE-22362 Lund, Sweden
[3] IBM Global Business Serv Sweden, SE-16492 Stockholm, Sweden
[4] SLU, Dept Plant Protect Biol, SE-23053 Alnarp, Sweden
来源
AGRONOMY-BASEL | 2019年 / 9卷 / 05期
基金
瑞典研究理事会;
关键词
field phenotyping; precision breeding; precision agriculture; decision support systems; NITROGEN NUTRITION INDEX; VARIABLE-RATE TECHNOLOGY; CROP SURFACE MODELS; VEGETATION INDEXES; CANOPY TEMPERATURE; GENOMIC SELECTION; DISEASE DETECTION; IMAGING SENSORS; LOW-ALTITUDE; POTATO;
D O I
10.3390/agronomy9050258
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
High-throughput field phenotyping has garnered major attention in recent years leading to the development of several new protocols for recording various plant traits of interest. Phenotyping of plants for breeding and for precision agriculture have different requirements due to different sizes of the plots and fields, differing purposes and the urgency of the action required after phenotyping. While in plant breeding phenotyping is done on several thousand small plots mainly to evaluate them for various traits, in plant cultivation, phenotyping is done in large fields to detect the occurrence of plant stresses and weeds at an early stage. The aim of this review is to highlight how various high-throughput phenotyping methods are used for plant breeding and farming and the key differences in the applications of such methods. Thus, various techniques for plant phenotyping are presented together with applications of these techniques for breeding and cultivation. Several examples from the literature using these techniques are summarized and the key technical aspects are highlighted.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops
    Kim, Minsu
    Lee, Chaewon
    Hong, Subin
    Kim, Song Lim
    Baek, Jeong-Ho
    Kim, Kyung-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (15)
  • [32] High-Throughput Phenotyping and Improvements in Breeding Cassava for Increased Carotenoids in the Roots
    Belalcazar, John
    Dufour, Dominique
    Andersson, Meike S.
    Pizarro, Monica
    Luna, Jorge
    Londono, Luis
    Morante, Nelson
    Jaramillo, Angelica M.
    Pino, Lizbeth
    Becerra Lopez-Lavalle, Luis A.
    Davrieux, Fabrice
    Talsma, Elise F.
    Ceballos, Hernan
    CROP SCIENCE, 2016, 56 (06) : 2916 - 2925
  • [33] High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge
    Cabrera-Bosquet, Llorenc
    Crossa, Jose
    von Zitzewitz, Jarislav
    Dolors Serret, Maria
    Luis Araus, Jose
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2012, 54 (05) : 312 - 320
  • [34] High-throughput phenotyping: Breaking through the bottleneck in future crop breeding
    Peng Song
    Jinglu Wang
    Xinyu Guo
    Wanneng Yang
    Chunjiang Zhao
    The Crop Journal, 2021, 9 (03) : 633 - 645
  • [35] Breeding Differently-the Digital Revolution: High-Throughput Phenotyping and Genotyping
    Slater, Anthony T.
    Cogan, Noel O. I.
    Rodoni, Brendan C.
    Daetwyler, Hans D.
    Hayes, Benjamin J.
    Caruana, Brittney
    Badenhorst, Pieter E.
    Spangenberg, German C.
    Forster, John W.
    POTATO RESEARCH, 2017, 60 (3-4) : 337 - 352
  • [36] High-throughput phenotyping: Breaking through the bottleneck in future crop breeding
    Song, Peng
    Wang, Jinglu
    Guo, Xinyu
    Yang, Wanneng
    Zhao, Chunjiang
    CROP JOURNAL, 2021, 9 (03): : 633 - 645
  • [37] High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab?
    Rouphael, Youssef
    Spichal, Lukas
    Panzarova, Klara
    Casa, Raffaele
    Colla, Giuseppe
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [38] HTPheno: An image analysis pipeline for high-throughput plant phenotyping
    Anja Hartmann
    Tobias Czauderna
    Roberto Hoffmann
    Nils Stein
    Falk Schreiber
    BMC Bioinformatics, 12
  • [39] Deep learning: as the new frontier in high-throughput plant phenotyping
    Arya, Sunny
    Sandhu, Karansher Singh
    Singh, Jagmohan
    Kumar, Sudhir
    EUPHYTICA, 2022, 218 (04)
  • [40] Distributed Management of Scientific Workflows for High-Throughput Plant Phenotyping
    Pradal, Christophe
    Cohen-Boulakia, Sarah
    Heidsieck, Gaetan
    Pacitti, Esther
    Tardieu, Francois
    Valduriez, Patrick
    ERCIM NEWS, 2018, (113): : 36 - 37