A perturbation method applied to the inverse heat conduction problem

被引:2
|
作者
BenAbdallah, P
Sadat, H
机构
关键词
conduction; regularization; inversion;
D O I
10.1016/S1251-8069(97)89449-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A perturbation method coupled with a procedure based on the concept of regularization is presented for the solution of the linear inverse heat conduction problem. The results of a numerical example show the accuracy and efficiency of this approach.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 50 条
  • [31] Solution to inverse heat conduction problem in nanoscale using sequential method
    Kim, SK
    Daniel, IM
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2003, 44 (05) : 439 - 456
  • [32] A regularized integral equation method for the inverse geometry heat conduction problem
    Liu, Chein-Shan
    Chang, Chih-Wen
    Chiang, Chia-Yen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (21-22) : 5380 - 5388
  • [33] METHOD OF FUNDAMENTAL SOLUTION FOR AN INVERSE HEAT CONDUCTION PROBLEM WITH VARIABLE COEFFICIENTS
    Li, Ming
    Xiong, Xiang-Tuan
    Li, Yan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [34] A decentralized fuzzy inference method for the inverse geometry heat conduction problem
    Li, Yanhao
    Wang, Guangjun
    Chen, Hong
    Zhu, Zhenyu
    Zhang, Daqian
    APPLIED THERMAL ENGINEERING, 2016, 106 : 109 - 116
  • [35] A boundary identification method for an inverse heat conduction problem with an application in ironmaking
    T. P. Fredman
    Heat and Mass Transfer, 2004, 41 : 95 - 103
  • [36] A gradient descent method for solving an inverse coefficient heat conduction problem
    S. I. Kabanikhin
    A. Hasanov
    A. V. Penenko
    Numerical Analysis and Applications, 2008, 1 (1) : 34 - 45
  • [37] A WAVELET REGULARIZATION METHOD FOR AN INVERSE HEAT CONDUCTION PROBLEM WITH CONVECTION TERM
    Cheng, Wei
    Zhang, Ying-Qi
    Fu, Chu-Li
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [38] A Modified Regularization Method for a Spherically Symmetric Inverse Heat Conduction Problem
    Cheng, Wei
    Liu, Yi-Liang
    Yang, Fan
    SYMMETRY-BASEL, 2022, 14 (10):
  • [39] METHOD OF MINIMAX OPTIMIZATION IN THE COEFFICIENT INVERSE HEAT-CONDUCTION PROBLEM
    Diligenskaya, A. N.
    Rapoport, E. Ya.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2016, 89 (04) : 1008 - 1013
  • [40] A method of fundamental solutions for the radially symmetric inverse heat conduction problem
    Johansson, B. Tomas
    Lesnic, Daniel
    Reeve, Thomas
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (07) : 887 - 895