SUBDIFFUSION WITH A TIME-DEPENDENT COEFFICIENT: ANALYSIS AND NUMERICAL SOLUTION

被引:73
|
作者
Jin, Bangti [1 ]
Li, Buyang [2 ]
Zhou, Zhi [2 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] Polytech Univ Hong Kong, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Subdiffusion; time-dependent coefficient; Galerkin finite element method; convolution quadrature; perturbation argument; error estimate; FRACTIONAL DIFFUSION-EQUATIONS; FINITE-DIFFERENCE METHOD; PARABOLIC PROBLEMS; ELEMENT-METHOD; WAVE EQUATIONS; ERROR ANALYSIS; NONSMOOTH DATA; REGULARITY; SCHEME; APPROXIMATIONS;
D O I
10.1090/mcom/3413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadrature in time. The regularity of the solutions of the subdiffusion model is proved for both nonsmooth initial data and incompatible source term. Optimal-order convergence of the numerical solutions is established using the proven solution regularity and a novel perturbation argument via freezing the diffusion coefficient at a fixed time. The analysis is supported by numerical experiments.
引用
收藏
页码:2157 / 2186
页数:30
相关论文
共 50 条
  • [21] NUMERICAL SOLUTION OF TIME-DEPENDENT MULTIGROUP DIFFUSION EQUATIONS
    ANDREWS, JB
    HANSEN, KF
    NUCLEAR SCIENCE AND ENGINEERING, 1968, 31 (02) : 304 - &
  • [22] Numerical Analysis of Time-Dependent Inhibition by MDMA
    Rodgers, John T.
    Jones, Jeffrey P.
    DRUG METABOLISM AND DISPOSITION, 2020, 48 (01) : 1 - 7
  • [23] Solution of the Analysis Problem of a Machine Assembly Distributed System with Time-Dependent Heat Transfer Coefficient
    Koval', Vladimir Alexandrovich
    Torgashova, Olga Yurjevna
    Solomin, Maxim Andreevich
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [24] Analytical Solution for Pollutant Diffusion in Soils with Time-Dependent Dispersion Coefficient
    Yu, Chuang
    Wang, Hui
    Wu, Ze-xiang
    Sun, Wen-jing
    Fatahi, Behzad
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2019, 19 (10)
  • [25] NUMERICAL-SOLUTION OF TIME-DEPENDENT FLUX EQUATIONS FOR THERMOMIGRATION
    KOHATSU, I
    WUENSCH, BJ
    AMERICAN CERAMIC SOCIETY BULLETIN, 1980, 59 (03): : 359 - 359
  • [26] NUMERICAL SOLUTION OF TIME-DEPENDENT NERNST-PLANCK EQUATIONS
    COHEN, H
    COOLEY, JW
    BIOPHYSICAL JOURNAL, 1965, 5 (02) : 145 - &
  • [27] Numerical solution of the time-dependent Schrodinger equation in one dimension
    Wong, Bernardine Renaldo
    JURNAL FIZIK MALAYSIA, 2007, 28 (1-2): : 29 - 34
  • [28] PARTICLE METHOD FOR NUMERICAL SOLUTION OF TIME-DEPENDENT SCHRODINGER EQUATION
    WEINER, JH
    ASKAR, A
    JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (08): : 3534 - &
  • [29] PARTICLE METHOD FOR NUMERICAL SOLUTION OF TIME-DEPENDENT SCHRODINGER EQUATION
    WEINER, JH
    ASKAR, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 25 - &
  • [30] A Meshfree Method for Numerical Solution of Nonhomogeneous Time-Dependent Problems
    Jiang, Ziwu
    Su, Lingde
    Jiang, Tongsong
    ABSTRACT AND APPLIED ANALYSIS, 2014,