Cofinalities of linear orders

被引:0
|
作者
Gitik, M [1 ]
Löwe, B [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 1999年 / 16卷 / 02期
关键词
linear orders; cofinal sequences; regular cardinals; Axiom of Choice; consistency strength;
D O I
10.1023/A:1006323303118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate whether the existence of long linear orders can be proved without the Axiom of Choice. This question has two different answers depending on its formalization.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [21] Acyclic sets of linear orders via the Bruhat orders
    Ádám Galambos
    Victor Reiner
    Social Choice and Welfare, 2008, 30 : 245 - 264
  • [22] Restrictions on forcings that change cofinalities
    Yair Hayut
    Asaf Karagila
    Archive for Mathematical Logic, 2016, 55 : 373 - 384
  • [23] Different cofinalities of tree ideals
    Shelah, Saharon
    Spinas, Otmar
    ANNALS OF PURE AND APPLIED LOGIC, 2023, 174 (08)
  • [24] ITERATED FORCING AND CHANGING COFINALITIES
    SHELAH, S
    ISRAEL JOURNAL OF MATHEMATICS, 1981, 40 (01) : 1 - 32
  • [25] Restrictions on forcings that change cofinalities
    Hayut, Yair
    Karagila, Asaf
    ARCHIVE FOR MATHEMATICAL LOGIC, 2016, 55 (3-4) : 373 - 384
  • [26] Epimorphisms Between Linear Orders
    Riccardo Camerlo
    Raphaël Carroy
    Alberto Marcone
    Order, 2015, 32 : 387 - 400
  • [27] Embedding linear orders in grids
    Ehrenfeucht, A
    Harju, T
    Rozenberg, G
    ACTA INFORMATICA, 2006, 42 (6-7) : 419 - 428
  • [28] Linear Orders on General Algebras
    Sándor Radeleczki
    Jenő Szigeti
    Order, 2005, 22 : 41 - 62
  • [29] Linear orders on general algebras
    Radeleczki, S
    Szigeti, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (01): : 41 - 62
  • [30] COMPUTABLE LINEAR ORDERS AND PRODUCTS
    Frolov, Andrey N.
    Lempp, Steffen
    Ng, Keng Meng
    Wu, Guohua
    JOURNAL OF SYMBOLIC LOGIC, 2020, 85 (02) : 605 - 623