A Clustering-Based Unsupervised Approach to Anomaly Intrusion Detection

被引:0
|
作者
Nikolova, Evgeniya [1 ]
Jecheva, Veselina [1 ]
机构
[1] Burgas Free Univ, Fac Comp Sci & Engn, Burgas, Bulgaria
关键词
anomaly based IDS; 2-means clustering; Recall; Precision; F-1; measure; Dunn index; Davies-Bouldin index;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper a 2-means clustering-based anomaly detection technique is proposed. The presented method parses the set of training data, consisting of normal and anomaly data, and separates the data into two clusters. Each cluster is represented by its centroid - one of the normal observations, and the other - for the anomalies. The paper also provides appropriate methods for clustering, training and detection of attacks. The performance of the presented methodology is evaluated by the following methods: Recall, Precision and F1-measure. Measurements of performance are executed with Dunn index and Davies-Bouldin index.
引用
收藏
页码:202 / 205
页数:4
相关论文
共 50 条
  • [31] Anomaly intrusion detection based on clustering a data stream
    Oh, Sang-Hyun
    Kang, Jin-Suk
    Bytin, Yung-Cheol
    Jeong, Taikyeong T.
    Lee, Won-Suk
    INFORMATION SECURITY, PROCEEDINGS, 2006, 4176 : 415 - 426
  • [32] Entropy clustering-based granular classifiers for network intrusion detection
    Liu, Hui
    Hao, Gang
    Xing, Bin
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [33] An unsupervised anomaly intrusion detection algorithm based on swarm intelligence
    Feng, Y
    Wu, ZF
    Wu, KG
    Xiong, ZY
    Zhou, Y
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3965 - 3969
  • [34] Unsupervised intrusion detection for rail transit based on anomaly segmentation
    Yixin Shen
    Deqiang He
    Qi Liu
    Zhenzhen Jin
    Xianwang Li
    Chonghui Ren
    Signal, Image and Video Processing, 2024, 18 : 1079 - 1087
  • [35] Unsupervised intrusion detection for rail transit based on anomaly segmentation
    Shen, Yixin
    He, Deqiang
    Liu, Qi
    Jin, Zhenzhen
    Li, Xianwang
    Ren, Chonghui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1079 - 1087
  • [36] An unsupervised clustering algorithm for intrusion detection
    Guan, Y
    Ghorbani, AA
    Belacel, N
    ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, 2671 : 616 - 617
  • [37] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    APPLIED SOFT COMPUTING, 2021, 100
  • [38] Clustering-Based Anomaly Detection in Multi-View Data
    Alvarez, Alejandro Marcos
    Yamada, Makoto
    Kimura, Akisato
    Iwata, Tomoharu
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1545 - 1548
  • [39] A Clustering-Based Method to Anomaly Detection in Thermal Power Plants
    Drapal, Patricia
    Clemente, Jullya
    Reyes, Dailys Maite
    de Souza, Starch Melo
    Lins, Anthony
    Prudencio, Ricardo B. C.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] Time series anomaly detection via clustering-based representation
    Enayati, Elham
    Mortazavi, Reza
    Basiri, Abdolali
    Ghasemian, Javad
    Moallem, Mahmoud
    EVOLVING SYSTEMS, 2024, 15 (04) : 1115 - 1136