Using Radiomic Study Design Recommendations to Optimize Classification Performance in Brain Metastases

被引:0
|
作者
Mitchell, D. [1 ]
Buszek, S. [1 ]
Tran, B. [1 ]
Liu, H. [1 ]
Chung, C. [1 ]
机构
[1] UT MD Anderson Canc Ctr, Houston, TX USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SU-E-207-0
引用
收藏
页码:E122 / E122
页数:1
相关论文
共 50 条
  • [21] A preliminary dosimetric study of multiple brain metastases using HyperArc and RapidArc techniques
    Wang, Y.
    Peng, Z.
    Yang, P.
    Liu, Y.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1602 - S1603
  • [22] A CASE STUDY ON THE DESIGN OF A MODULAR SURGICAL INSTRUMENT FOR REMOVING METASTASES USING ENGINEERING DESIGN TOOLS
    Preca, George
    Farrugia, Philip
    Casha, Aaron
    DS 78: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION (E&PDE14): DESIGN EDUCATION AND HUMAN TECHNOLOGY RELATIONS, 2014, : 650 - 656
  • [23] Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation
    Sohi Bae
    Chansik An
    Sung Soo Ahn
    Hwiyoung Kim
    Kyunghwa Han
    Sang Wook Kim
    Ji Eun Park
    Ho Sung Kim
    Seung-Koo Lee
    Scientific Reports, 10
  • [24] Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation
    Bae, Sohi
    An, Chansik
    Ahn, Sung Soo
    Kim, Hwiyoung
    Han, Kyunghwa
    Kim, Sang Wook
    Park, Ji Eun
    Kim, Ho Sung
    Lee, Seung-Koo
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [25] Improvement of classification performance using harmonization across field strength of radiomic features extracted from DCE-MR images of the breast
    Whitney, Heather M.
    Giger, Maryellen L.
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [26] A Comprehensive Study on Classification of Brain Tumor Detection by using Machine Learning
    Krishna, J. Hari
    Kumar, Ammisetty Tarun
    Kiran, Gogineni Sai
    Harsha, Uppala Pavan
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 4024 - 4033
  • [27] Predicting Survival Rates in Brain Metastases Patients from Non-Small Cell Lung Cancer Using Radiomic Signatures Associated with Tumor Immune Heterogeneity
    Deng, Fuxing
    Xiao, Gang
    Tanzhu, Guilong
    Chu, Xianjing
    Ning, Jiaoyang
    Lu, Ruoyu
    Chen, Liu
    Zhang, Zijian
    Zhou, Rongrong
    ADVANCED SCIENCE, 2025, 12 (10)
  • [28] Fractionated SRT using VMAT and Gamma Knife for brain metastases and gliomas - a planning study
    Huss, Marie
    Barsoum, Pierre
    Dodoo, Ernest
    Sinclair, Georges
    Toma-Dasu, Iuliana
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2015, 16 (06): : 3 - 16
  • [29] A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method
    Stefano, Alessandro
    Comelli, Albert
    Bravata, Valentina
    Barone, Stefano
    Daskalovski, Igor
    Savoca, Gaetano
    Sabini, Maria Gabriella
    Ippolito, Massimo
    Russo, Giorgio
    BMC BIOINFORMATICS, 2020, 21 (Suppl 8)
  • [30] A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method
    Alessandro Stefano
    Albert Comelli
    Valentina Bravatà
    Stefano Barone
    Igor Daskalovski
    Gaetano Savoca
    Maria Gabriella Sabini
    Massimo Ippolito
    Giorgio Russo
    BMC Bioinformatics, 21