Understanding the Role of Cyclodextrins in the Self-Assembly, Crystallinity, and Porosity of Titania Nanostructures

被引:23
|
作者
Bleta, Rudina [1 ]
Lannoy, Anthony [1 ]
Machut, Cecile [1 ]
Monflier, Eric [1 ]
Ponchel, Anne [1 ]
机构
[1] Univ Artois, Fac Sci Jean Perrin, UMR CNRS 8181, UCCS, F-62307 Lens, France
关键词
MESOPOROUS METAL-OXIDES; BLOCK-COPOLYMER; RUTILE TRANSFORMATION; ORGANIC POLLUTANTS; PHASE-STABILITY; ANATASE; TIO2; NANOPARTICLES; NANOCRYSTALS; DEGRADATION;
D O I
10.1021/la502911v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of mesoporous titania photocatalysts with tailorable structural and textural characteristics was prepared in aqueous phase via a colloidal self-assembly approach using various cyclodextrins (CDs) as structure-directing agents. The photocatalysts and the structure-directing agents were characterized at different stages of the synthesis by combining X-ray diffraction, N-2-adsorption, field emission scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, dynamic light scattering, and surface tension measurements. The results demonstrate that the cyclic macromolecules efficiently direct the self-assembly of titania colloids, resulting in a fine-tuning of the crystal phase composition, crystallite size, surface area, particle morphology, pore volume, and pore size. Depending on the chemical nature of the substituents in the cyclodextrin ring, synergistic or competitive effects arising from the adsorption capacity of these cyclic oligosaccharides onto titania surface, surface-active properties, and ability to aggregate in water by intermolecular interactions were found to substantially impact the characteristics of the final material. We propose that, in contrast to the native cyclodextrins, which tend to favor the local agglomeration of titania nanoparticles due to the strong intermolecular interactions, the substitution of hydroxyl groups by a relatively large number of methoxyl or 2-hydropropoxyl ones in the beta-CD derivatives allows for creating smoother interfaces, thus facilitating the self-assembly of the colloids in a more homogeneous network. The photocatalytic activity of those titania materials was evaluated in the photodegradation of a toxic herbicide, phenoxyacetic acid, and was correlated to the structural and textural characteristics of the photocatalysts.
引用
收藏
页码:11812 / 11822
页数:11
相关论文
共 50 条
  • [21] Self-Assembly of Chiral Plasmonic Nanostructures
    Lan, Xiang
    Wang, Qiangbin
    ADVANCED MATERIALS, 2016, 28 (47) : 10499 - 10507
  • [22] Preparation of ZnO nanostructures and Their Self-assembly
    Huang, Huandi
    Yang, Wentao
    Wang, Lina
    ADVANCED ENGINEERING MATERIALS II, PTS 1-3, 2012, 535-537 : 380 - 383
  • [23] Controlled self-assembly of nanostructures on nanotubes
    Patra, Niladri
    Song, Yuanbo
    Kral, Petr
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [24] Self-Assembly of Periodic Serrated Nanostructures
    Li, Dongdong
    Jiang, Chuanhai
    Jiang, Jianhua
    Lu, Jia G.
    CHEMISTRY OF MATERIALS, 2009, 21 (02) : 253 - 258
  • [25] Fullerene self-assembly and supramolecular nanostructures
    Zhang, Er-Yun
    Wang, Chun-Ru
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2009, 14 (02) : 148 - 156
  • [26] Self-Assembly of Graphene Nanostructures on Nanotubes
    Patra, Niladri
    Song, Yuanbo
    Kral, Petr
    ACS NANO, 2011, 5 (03) : 1798 - 1804
  • [27] Self-assembly of Clathrin protein nanostructures
    Arunagirinathan, Manickam Adhimoolam
    Gibbons, Brian J.
    Schoen, Alia P.
    Huggins, Kelly N. L.
    Heilshorn, Sarah C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [28] Combinatorial self-assembly of DNA nanostructures
    Lund, Kyle
    Liu, Yan
    Yan, Hao
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2006, 4 (18) : 3402 - 3403
  • [29] Self-assembly concepts for multicompartment nanostructures
    Groschel, Andre H.
    Mueller, Axel H. E.
    NANOSCALE, 2015, 7 (28) : 11841 - 11876
  • [30] Epitaxial self-assembly of multiferroic nanostructures
    Tan, Zhuopeng
    Slutsker, Julia
    Roytburd, Alexander L.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)