Towards Loop Quantum Gravity without the Time Gauge

被引:28
|
作者
Cianfrani, Francesco [1 ]
Montani, Giovanni [1 ,2 ,3 ]
机构
[1] Univ Roma La Sapienza, ICRA, Phys Dept G9, I-00185 Rome, Italy
[2] ENEA CR Frascati, Dipartimento FPN, I-00044 Rome, Italy
[3] ICRANET CC Pescara, I-65100 Pescara, Italy
关键词
IMMIRZI PARAMETER; QUANTIZATION; AREA;
D O I
10.1103/PhysRevLett.102.091301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Towards a quantum notion of covariance in spherically symmetric loop quantum gravity
    Gambini, Rodolfo
    Olmedo, Javier
    Pullin, Jorge
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [12] Towards new background independent representations for loop quantum gravity
    Varadarajan, Madhavan
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (10)
  • [13] Towards a Loop Quantum Gravity and Yang-Mills unification
    Alexander, Stephon
    Marciano, Antonino
    Tacchi, Ruggero Altair
    PHYSICS LETTERS B, 2012, 716 (02) : 330 - 333
  • [14] Comment on "Towards a quantum notion of covariance in spherically symmetric loop quantum gravity"
    Bojowald, Martin
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [15] Time evolution in deparametrized models of loop quantum gravity
    Assanioussi, Mehdi
    Lewandowski, Jerzy
    Makinen, Ilkka
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [16] Gauge reduction with respect to simplicity constraint in all dimensional loop quantum gravity
    Long, Gaoping
    Zhang, Xiangdong
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [17] The picture of the Bianchi I model via gauge fixing in Loop Quantum Gravity
    Cianfrani, F.
    Marchini, A.
    Montani, G.
    EPL, 2012, 99 (01)
  • [18] Gauge invariant cosmological perturbation equations with corrections from loop quantum gravity
    Bojowald, Martin
    Hossain, Golam Mortuza
    Kagan, Mikhail
    Shankaranarayanan, S.
    PHYSICAL REVIEW D, 2009, 79 (04)
  • [19] Two-loop quantum gravity corrections to the cosmological constant in Landau gauge
    Hamada, Ken-ji
    Matsuda, Mikoto
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [20] Loop quantum gravity boundary dynamics and SL(2, C) gauge theory
    Livine, Etera R.
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (13)