Polynomial Flow-Cut Gaps and Hardness of Directed Cut Problems

被引:10
|
作者
Chuzhoy, Julia [1 ]
Khanna, Sanjeev [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
D O I
10.1145/1250790.1250817
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:179 / 188
页数:10
相关论文
共 50 条
  • [41] Cut cover problem in directed graphs
    Osaka Electro-Communication Univ, Osaka, Japan
    IEEE Asia Pac Conf Circuits Syst Proc, (703-706):
  • [42] MINIMUM CUT IN DIRECTED PLANAR NETWORKS
    JANIGA, L
    KOUBEK, V
    KYBERNETIKA, 1992, 28 (01) : 37 - 49
  • [43] On the max-flow min-cut ratio for directed multicommodity flows
    Hajiaghayi, MT
    Leighton, T
    THEORETICAL COMPUTER SCIENCE, 2006, 352 (1-3) : 318 - 321
  • [44] Algorithms for Cut Problems on Trees
    Kanj, Iyad
    Lin, Guohui
    Liu, Tian
    Tong, Weitian
    Xia, Ge
    Xu, Jinhui
    Yang, Boting
    Zhang, Fenghui
    Zhang, Peng
    Zhu, Binhai
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 283 - 298
  • [45] 2 STRONGLY POLYNOMIAL CUT CANCELING ALGORITHMS FOR MINIMUM-COST NETWORK FLOW
    ERVOLINA, TR
    MCCORMICK, ST
    DISCRETE APPLIED MATHEMATICS, 1993, 46 (02) : 133 - 165
  • [46] Mathematically Directed Single-Cut Osteotomy
    Wallace, Stephen J.
    Patterson, Joseph T.
    Nork, Sean E.
    MEDICINA-LITHUANIA, 2022, 58 (07):
  • [47] ODD MULTIWAY CUT IN DIRECTED ACYCLIC GRAPHS
    Chandrasekaran, Karthekeyan
    Mnich, Matthias
    Mozaffari, Sahand
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1385 - 1408
  • [48] INCREASE FLOW TO CUT FOULING
    CROZIER, RA
    CHEMICAL ENGINEERING, 1982, 89 (05) : 115 - 115
  • [49] A Cut Principle for Information Flow
    Guttman, Joshua D.
    Rowe, Paul D.
    2015 IEEE 28TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM CSF 2015, 2015, : 107 - 121
  • [50] Oblivious Algorithms for the Maximum Directed Cut Problem
    Feige, Uriel
    Jozeph, Shlomo
    ALGORITHMICA, 2015, 71 (02) : 409 - 428