MOP:: A space debris and interplanetary dust sample return mission

被引:0
|
作者
Scherer, K [1 ]
Hilchenbach, M [1 ]
Kirsch, E [1 ]
Livi, S [1 ]
Bendisch, J [1 ]
Blum, J [1 ]
Mutschke, H [1 ]
Diedrich, T [1 ]
Oelze, H [1 ]
Flury, W [1 ]
Geis, S [1 ]
Fricke, J [1 ]
Häusler, B [1 ]
Huisken, F [1 ]
Jessberger, EK [1 ]
Klöck, W [1 ]
Koppenwallner, G [1 ]
Ott, U [1 ]
Sdunnnus, H [1 ]
Srama, R [1 ]
机构
[1] Max Planck Inst Aeron, D-37191 Katlenburg Lindau, Germany
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Our knowledge of the dynamics and composition of interplanetary dust particles is mainly based on theoretical models. Only for a few dust grains that were captured in low Earth orbits (< 2000 km) the composition and mineralogy has been studied. The additional contribution of space debris at low altitudes is rather well understood, but the flux of small space debris in higher orbits could not yet be determined. The MOP spacecraft will have a geostationary transfer orbit (i.e. an apogee distance of approximate to 42000 km) and will collect on aerogel plates both species, the interplanetary as well as the artifical grains in high altitudes far away from atmospheric influence. After a reentry manoeuvre, these particles can be investigated in laboratories on Earth. Their traces in the aerogel can be used to determine velocities and impact directions. Moreover, the MOP satellite will carry a new instrument to detect in-situ nano-particles, i.e. particles with masses in the range between 10(-17)-10(-21) grams. Thus, for the first time, the MOP mission will provide direct information (a) on interplanetary dust particles and space debris in high altitudes up to geostationary orbits, (b) on their phase space vectors, and (c) on the fluxes of nano-particles.
引用
收藏
页码:541 / 546
页数:6
相关论文
共 50 条
  • [21] A 3-D NUMERICAL-MODEL FOR SPACE DEBRIS AND INTERPLANETARY DUST FLUXES INCIDENT ON LDEF
    GREEN, SF
    DESHPANDE, SP
    MACKAY, NG
    ADVANCES IN SPACE RESEARCH-SERIES, 1993, 13 (08): : 107 - 110
  • [22] CHALLENGES OF THE ROSETTA SAMPLE RETURN MISSION
    ATZEI, A
    HECHLER, M
    SCHWEHM, G
    MITCHELL, R
    IONOSPHERIC MODELS, 1994, 14 (12): : 197 - 205
  • [23] Mars sample return mission with ISPP
    Sridhar, K.R.
    JBIS - Journal of the British Interplanetary Society, 1996, 49 (11): : 435 - 440
  • [24] NEO-sample return mission
    Brucato, J. R.
    Barucci, A.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A126 - A126
  • [25] Venus sample return mission revisited
    Dominique Valentian
    Christophe Koppel
    Philippe Mairet
    Loup Mairet
    Experimental Astronomy, 2022, 54 : 597 - 616
  • [26] Venus sample return mission revisited
    Valentian, Dominique
    Koppel, Christophe
    Mairet, Philippe
    Mairet, Loup
    EXPERIMENTAL ASTRONOMY, 2022, 54 (2-3) : 597 - 616
  • [27] Sample Survivability for a Comet Surface Sample Return Mission
    Papadakis, S. J.
    Gerasopoulos, K.
    Kalter, J.
    Tien-Street, B.
    Kott, T. M.
    Walter, R.
    Jin, M. H-C.
    Currano, L. J.
    Graham, J. S.
    Navid, H.
    Turner, K. R.
    Elsila, J. E.
    2017 IEEE AEROSPACE CONFERENCE, 2017,
  • [28] Martian Dust Storms: Reviews and Perspective for the Tianwen-3 Mars Sample Return Mission
    He, Fei
    Rong, Zhaojin
    Wu, Zhaopeng
    Gao, Jiawei
    Fan, Kai
    Zhou, Xu
    Yan, Limei
    Wang, Yuqi
    Wei, Yong
    REMOTE SENSING, 2024, 16 (14)
  • [29] Closing Force Evaluation of a Sample Return Capsule for a Phobos Sample Return Mission
    Mihalache, Radu
    Mihai, Dragos
    Megherelu, Gheorghe
    Popa, Ionut Florian
    Vintila, Ionut Sebastian
    Paraschiv, Alexandru
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [30] Mission design for the Mars 2003/2005 Sample Return mission
    Lee, W
    D'Amario, L
    Roncoli, R
    Smith, J
    ASTRODYNAMICS 1999, PTS 1-3, 2000, 103 : 85 - 102