Online Classifiers Based on Fuzzy C-means Clustering

被引:0
|
作者
Jedrzejowicz, Joanna [1 ]
Jedrzejowicz, Piotr [2 ]
机构
[1] Univ Gdansk, Inst Informat, Wita Stwosza 57, PL-80952 Gdansk, Poland
[2] Gdynia Maritime Univ, Dept Informat Syst, PL-81225 Gdynia, Poland
关键词
online learning; fuzzy C-means clustering; DATA STREAMS; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the online approach a classifier is, as usual, induced from the available training set. However, in addition, there is also some adaptation mechanism providing for a classifier evolution after the classification task has been initiated and started. In this paper two algorithms for online learning and classification are considered. These algorithms work in rounds, where at each round a new instance is given and the algorithm makes a prediction. After the true class of the instance is revealed, the learning algorithm updates its internal hypothesis. Both algorithms are based on fuzzy C-means clustering followed by calculation of distances between cluster centroids and the incoming instance for which the class label is to be predicted. The proposed approach is validated experimentally. Experiment results show that both proposed classifiers can be considered as a useful extension of the existing range of online classifiers.
引用
收藏
页码:427 / 436
页数:10
相关论文
共 50 条
  • [21] Research Financial Market Based on Fuzzy C-means Clustering
    Zhou, You
    Che, Wen-Gang
    Zhao, Qing-Jiang
    Li, Chao-Chao
    Gan, Ju
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 812 - 815
  • [22] Indoor Fingerprint Localization Based on Fuzzy C-means Clustering
    Zhou, Hao
    Nguyen Ngoc Van
    2014 SIXTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2014, : 337 - 340
  • [23] An Image Segmentation Algorithm Based on Fuzzy C-Means Clustering
    Zhang, Xin-bo
    Jiang, Li
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 22 - 26
  • [24] Track mining based on density clustering and fuzzy C-means
    Jin, Dailiang
    Zhao, Xu
    Pang, Long
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 1429 - 1434
  • [25] Clonal Selection based Fuzzy C-Means Algorithm for Clustering
    Ludwig, Simone A.
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 105 - 112
  • [26] An ordered clustering algorithm based on fuzzy c-means and PROMETHEE
    Bai, Chengzu
    Zhang, Ren
    Qian, Longxia
    Liu, Lijun
    Wu, Yaning
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (06) : 1423 - 1436
  • [27] An ordered clustering algorithm based on fuzzy c-means and PROMETHEE
    Chengzu Bai
    Ren Zhang
    Longxia Qian
    Lijun Liu
    Yaning Wu
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 1423 - 1436
  • [28] An improved fuzzy C-means clustering algorithm based on PSO
    Niu Q.
    Huang X.
    Journal of Software, 2011, 6 (05) : 873 - 879
  • [29] A Fuzzy C-Means Clustering Algorithm Based on Reachable Distance
    Cui, Junchao
    Zhang, Qiongbing
    Li, Xiaolong
    Journal of Geo-Information Science, 2024, 26 (09) : 2038 - 2051
  • [30] Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
    Izakian, Hesam
    Abraham, Ajith
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1835 - 1838