Analysis for the Weakly Pareto Optimum in Multiobjective-Based Hyperspectral Band Selection

被引:26
|
作者
Pan, Bin [1 ,2 ]
Shi, Zhenwei [1 ,3 ,4 ]
Xu, Xia [1 ,2 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, Beijing 100083, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266510, Shandong, Peoples R China
[3] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100083, Peoples R China
[4] Beihang Univ, Sch Astronaut, State Key Lab Virtual Real Technol & Syst, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Band selection; hyperspectral imagery (HSI); multiobjective (MO) optimization; weakly Pareto optimum; CLASSIFICATION; IMAGES; DECOMPOSITION; ALGORITHM;
D O I
10.1109/TGRS.2018.2886853
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Band selection refers to finding the most representative channels from hyperspectral images. Usually, certain objective functions are designed and combined via regularization terms. A possible drawback of these methods is that they can only generate one solution in a single run with a given band number. To overcome this problem, multiobjective (MO)-based methods, which were able to simultaneously obtain a series of subsets with different band numbers, were investigated for band selection. However, because the range of band selection problem is discrete, recently proposed weighted Tchebycheff (WT)-based MO methods may suffer weakly Pareto optimal problem. In this case, the solutions for each band number will be nonunique and no optimal solution exists. Decision makers have to manually select a unique solution for each band number. In this paper, we provide a theoretical analysis about the weakly Pareto optimal problem in band selection, and quantitatively give the boundary conditions. Moreover, we further summarize the suggestions which will help users avoid the weakly Pareto optimal problem. According to these criteria, we develop a new adaptive-penalty-based boundary intersection (APBI) framework to improve the MO algorithm in hyperspectral band selection. APBI mainly includes two advantages: 1) avoiding weakly Pareto optimum and 2) reducing the sensibility of the penalty factor. The theoretical analysis is further validated by contrast experiments. The results demonstrate that the weakly Pareto optimal solutions really exist in WT methods, while APBI can overcome this problem.
引用
收藏
页码:3729 / 3740
页数:12
相关论文
共 50 条
  • [21] Genetic algorithm for pareto optimum-based route selection
    Cui Xunxue
    2. Jiangsu Key Lab of Computer Information Processing Technology
    Journal of Systems Engineering and Electronics, 2007, (02) : 360 - 368
  • [22] Genetic algorithm for pareto optimum-based route selection
    Cui Xunxue
    Li Qin
    Tao Qing
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2007, 18 (02) : 360 - 368
  • [23] HYPERSPECTRAL BAND SELECTION BASED ON ENDMEMBER DISSIMILARITY FOR HYPERSPECTRAL UNMIXING
    Xu, Mingming
    Zhang, Yuxiang
    Li, Jie
    Li, Jiayi
    Song, Dongmei
    Fan, Yanguo
    Sun, Ning
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4693 - 4696
  • [24] A Fast Hyperspectral Feature Selection Method Based on Band Correlation Analysis
    Zhang, Wenqiang
    Li, Xiaorun
    Zhao, Liaoying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1750 - 1754
  • [25] Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis
    Yuan, Yuan
    Lin, Jianzhe
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1431 - 1445
  • [26] Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis
    Du, Qian
    Yang, He
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) : 564 - 568
  • [27] Independent component analysis-based band selection for hyperspectral imagery
    He, Yuanlei
    Liu, Daizhi
    Wang, Jingli
    Yi, Shihua
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2012, 41 (03): : 818 - 824
  • [28] A ROUGH SET BASED BAND SELECTION TECHNIQUE FOR THE ANALYSIS OF HYPERSPECTRAL IMAGES
    Patra, Swarnajyoti
    Bruzzone, Lorenzo
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 497 - 500
  • [29] A Geometry-Based Band Selection Approach for Hyperspectral Image Analysis
    Zhang, Wenqiang
    Li, Xiaorun
    Dou, Yaxing
    Zhao, Liaoying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08): : 4318 - 4333
  • [30] Band selection based on hyperspectral piling Fisher graphs (HSPFiGs) analysis
    Sun, Yujuan
    Pei, Jihong
    INFRARED PHYSICS & TECHNOLOGY, 2023, 133