Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air

被引:113
|
作者
Okafor, Ekenechukwu C. [1 ]
Hayakawa, Akihiro [1 ]
Nagano, Yukihide [1 ]
Kitagawa, Toshiaki [1 ]
机构
[1] Kyushu Univ, Fac Engn, Dept Mech Engn, Nishi Ku, Fukuoka 8190395, Japan
关键词
Hydrogen; Methane; Laminar burning velocity; Markstein number; Lewis number; Flame instability; TURBULENT BURNING VELOCITY; EXPANDING SPHERICAL FLAMES; ELEVATED PRESSURES; MARKSTEIN LENGTH; MIXTURES; PROPAGATION; HYDROCARBON; ENGINE; SPEEDS; FLOWS;
D O I
10.1016/j.ijhydene.2013.11.128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The unstretched laminar burning velocities and Markstein numbers of spherically propagating hydrogen-methane-air flames were studied at a mixture pressure of 0.10 MPa and a mixture temperature of 350 K. The fraction of hydrogen in the binary fuel was varied from 0 to 1.0 at equivalence ratios of 0.8, 1.0 and 1.2. The unstretched laminar burning velocity increased non-linearly with hydrogen fraction for all the equivalence ratios. The Markstein number varied non-monotonically at equivalence ratios of 0.8 and 1.0 and increased monotonically at equivalence ratio of 1.2 with increasing hydrogen fraction. Analytical evaluation of the Markstein number suggested that the trends could be due to the effective Lewis number, which varied non-monotonically with hydrogen fraction at equivalence ratios of 0.8 and 1.0 and increased monotonically at 1.2. The propensity of flame instability varied non-monotonically with hydrogen fraction at equivalence ratios of 0.8 and 1.0. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2409 / 2417
页数:9
相关论文
共 50 条
  • [21] Measurements of the laminar burning velocity of hydrogen-air premixed flames
    Pareja, Jhon
    Burbano, Hugo J.
    Ogami, Yasuhiro
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (04) : 1812 - 1818
  • [22] On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames
    Zhao, Haoran
    Wang, Jinhua
    Cai, Xiao
    Dai, Hongchao
    Liu, Xiao
    Li, Gang
    Huang, Zuohua
    ENERGY, 2023, 283
  • [23] Measurements of the laminar burning velocity of hydrogen-air premixed flames
    Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108, 447 Medellín, Colombia
    不详
    Int J Hydrogen Energy, 4 (1812-1818):
  • [24] DIFFUSIONAL EFFECTS IN PREMIXED LAMINAR FLAMES OF HYDROGEN, OXYGEN, AND NITROGEN
    HAYHURST, AN
    TELFORD, NR
    COMBUSTION AND FLAME, 1970, 14 (1-3) : 303 - &
  • [25] Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
    Galmiche, B.
    Halter, F.
    Foucher, F.
    Dagaut, P.
    ENERGY & FUELS, 2011, 25 (03) : 948 - 954
  • [26] Kinetic Effects of Hydrogen Addition on the Thermal Characteristics of Methane-Air Premixed Flames
    Li, Qingfang
    Hu, Ge
    Liao, Shiyong
    Cheng, Qian
    Zhang, Chi
    Yuan, Chun
    ENERGY & FUELS, 2014, 28 (06) : 4118 - 4129
  • [27] Experimental investigation on the effects of hydrogen addition on thermal characteristics of methane/air premixed flames
    Hu, G.
    Zhang, S.
    Li, Q. F.
    Pan, X. B.
    Liao, S. Y.
    Wang, H. Q.
    Yang, C.
    Wei, S.
    FUEL, 2014, 115 : 232 - 240
  • [28] Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production
    Lee, J. H.
    Kim, J. H.
    Park, J. H.
    Kwon, O. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) : 1054 - 1064
  • [29] Effects of radiation reabsorption on the laminar burning velocity of methane/air and methane/hydrogen/air flames at elevated pressures
    Zheng, Shu
    Liu, Hao
    Li, Dengke
    Liu, Zirui
    Zhou, Bo
    Lu, Qiang
    FUEL, 2022, 311
  • [30] Curvature effects on NO formation in wrinkled laminar ammonia/hydrogen/nitrogen-air premixed flames
    Netzer, Corinna
    Ahmed, Ahfaz
    Gruber, Andrea
    Lovas, Terese
    COMBUSTION AND FLAME, 2021, 232