Wavelet Methods in Computational Fluid Dynamics

被引:212
|
作者
Schneider, Kai [1 ,2 ,3 ]
Vasilyev, Oleg V. [4 ]
机构
[1] CNRS, Lab Modelisat Mecan & Procedes Propres, F-13451 Marseille 20, France
[2] Univ Aix Marseille, F-13451 Marseille 20, France
[3] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille 13, France
[4] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
adaptive methods for Navier-Stokes equations; multiresolution analysis; hierarchy of turbulence models; coherent vortex extraction and simulation; adaptive large-eddy simulations; PARTIAL-DIFFERENTIAL-EQUATIONS; COHERENT VORTEX SIMULATION; BRINKMAN PENALIZATION METHOD; ADAPTIVE MESH REFINEMENT; COLLOCATION METHOD; NUMERICAL-SOLUTION; DIVERGENCE-FREE; BOUNDARY-CONDITIONS; DECAYING TURBULENCE; ORTHONORMAL BASES;
D O I
10.1146/annurev-fluid-121108-145637
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This article reviews state-of-the-art adaptive, multiresolution wavelet methodologies for modeling and simulation of turbulent flows with various examples. Different numerical methods for solving the Navier-Stokes equations in adaptive wavelet bases are described. We summarize coherent vortex extraction methodologies, which utilize the efficient wavelet decomposition of turbulent flows into space-scale contributions, and present a hierarchy of wavelet-based turbulence models. Perspectives for modeling and computing industrially relevant flows are also given.
引用
收藏
页码:473 / 503
页数:31
相关论文
共 50 条
  • [11] Local Wavelet Adaptation of Cartesian Grids in Computational Fluid Dynamics
    Afendikov, A. L.
    Nikitin, V. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (02) : 300 - 313
  • [12] Local Wavelet Adaptation of Cartesian Grids in Computational Fluid Dynamics
    A. L. Afendikov
    V. S. Nikitin
    Computational Mathematics and Mathematical Physics, 2024, 64 : 300 - 313
  • [13] Computational Fluid Dynamics Using the Adaptive Wavelet-Collocation Method
    Mehta, Yash
    Nejadmalayeri, Ari
    Regele, Jonathan David
    FLUIDS, 2021, 6 (11)
  • [14] PROGRESS IN ADAPTIVE METHODS IN COMPUTATIONAL FLUID-DYNAMICS
    ODEN, JT
    ADAPTIVE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1989, : 206 - 252
  • [15] Computational Fluid Dynamics Methods for Wind Resources Assessment
    Upnere, Sabine
    Bezrukovs, Valerijs
    Bezrukovs, Vladislavs
    Jekabsons, Normunds
    Gulbe, Linda
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II, 2020, 11974 : 495 - 502
  • [16] Computational vascular fluid dynamics: Problems, models and methods
    Quarteroni, Alfio
    Tuveri, Massimiliano
    Veneziani, Alessandro
    2000, Springer Verlag (02)
  • [17] Advances in Computational Fluid Dynamics Methods for Hypersonic Flows
    Candler, Graham V.
    Subbareddy, Pramod K.
    Brock, Joseph M.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2015, 52 (01) : 17 - 28
  • [18] DOMAIN DECOMPOSITION METHODS IN COMPUTATIONAL FLUID-DYNAMICS
    GROPP, WD
    KEYES, DE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 14 (02) : 147 - 165
  • [19] IMPLICIT SOLUTION METHODS IN COMPUTATIONAL FLUID-DYNAMICS
    PULLIAM, TH
    APPLIED NUMERICAL MATHEMATICS, 1986, 2 (06) : 441 - 474
  • [20] THERMAL AND FLUID STRUCTURE DYNAMICS ANALYSIS - COMPUTATIONAL METHODS
    WASHBY, V
    NUCLEAR ENERGY-JOURNAL OF THE BRITISH NUCLEAR ENERGY SOCIETY, 1984, 23 (01): : 29 - 29