Non-line-of-sight imaging over 1.43 km

被引:98
|
作者
Wu, Cheng [1 ,2 ,3 ,4 ]
Liu, Jianjiang [1 ,2 ,3 ,4 ,5 ]
Huang, Xin [1 ,2 ,3 ,4 ]
Li, Zheng-Ping [1 ,2 ,3 ,4 ]
Yu, Chao [1 ,2 ,3 ,4 ]
Ye, Jun-Tian [1 ,2 ,3 ,4 ]
Zhang, Jun [1 ,2 ,3 ,4 ]
Zhang, Qiang [1 ,2 ,3 ,4 ]
Dou, Xiankang [1 ,2 ,5 ,6 ]
Goyal, Vivek K. [7 ]
Xu, Feihu [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai 201315, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
[6] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[7] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
基金
中国国家自然科学基金; 上海市科技启明星计划;
关键词
non-line-of-sight imaging; optical imaging; computational imaging; computer vision; RECONSTRUCTION; SCENES;
D O I
10.1073/pnas.2024468118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects from indirect light paths that scatter multiple times in the surrounding environment, which is of considerable interest in a wide range of applications. Whereas conventional imaging involves direct line-of-sight light transport to recover the visible objects, NLOS imaging aims to reconstruct the hidden objects from the indirect light paths that scatter multiple times, typically using the information encoded in the time-of-flight of scattered photons. Despite recent advances, NLOS imaging has remained at short-range realizations, limited by the heavy loss and the spatial mixing due to the multiple diffuse reflections. Here, both experimental and conceptual innovations yield hardware and software solutions to increase the standoff distance of NLOS imaging from meter to kilometer range, which is about three orders of magnitude longer than previous experiments. In hardware, we develop a high-efficiency, low-noise NLOS imaging system at near-infrared wavelength based on a dual-telescope confocal optical design. In software, we adopt a convex optimizer, equipped with a tailored spatial-temporal kernel expressed using three-dimensional matrix, to mitigate the effect of the spatial-temporal broadening over long standoffs. Together, these enable our demonstration of NLOS imaging and real-time tracking of hidden objects over a distance of 1.43 km. The results will open venues for the development of NLOS imaging techniques and relevant applications to real-world conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Non-Line-of-Sight Radar
    Woolfson, Malcolm
    AERONAUTICAL JOURNAL, 2020, 124 (1282): : 2019 - 2020
  • [32] Convolutional Approximations to the General Non-Line-of-Sight Imaging Operator
    Ahn, Byeongjoo
    Dave, Akshat
    Veeraraghavan, Ashok
    Gkioulekas, Ioannis
    Sankaranarayanan, Aswin C.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7888 - 7898
  • [33] Efficient non-line-of-sight tracking with computational neuromorphic imaging
    Zhu, Shuo
    Ge, Zhou
    Wang, Chutian
    Han, Jing
    Lam, Edmund Y.
    OPTICS LETTERS, 2024, 49 (13) : 3584 - 3587
  • [34] Passive Non-Line-of-Sight Imaging Using Optimal Transport
    Geng, Ruixu
    Hu, Yang
    Lu, Zhi
    Yu, Cong
    Li, Houqiang
    Zhang, Hengyu
    Chen, Yan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 110 - 124
  • [35] Onsite Non-Line-of-Sight Imaging via Online Calibration
    Pan, Zhengqing
    Li, Ruiqian
    Gao, Tian
    Wang, Zi
    Shen, Siyuan
    Liu, Ping
    Wu, Tao
    Yu, Jingyi
    Li, Shiying
    IEEE PHOTONICS JOURNAL, 2022, 14 (05):
  • [36] Learned Feature Embeddings for Non-Line-of-Sight Imaging and Recognition
    Chen, Wenzheng
    Wei, Fangyin
    Kutulakos, Kiriakos N.
    Rusinkiewicz, Szymon
    Heide, Felix
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [37] Non-line-of-sight imaging with arbitrary illumination and detection pattern
    Xintong Liu
    Jianyu Wang
    Leping Xiao
    Zuoqiang Shi
    Xing Fu
    Lingyun Qiu
    Nature Communications, 14
  • [38] Non-line-of-Sight Imaging via Neural Transient Fields
    Shen, Siyuan
    Wang, Zi
    Liu, Ping
    Pan, Zhengqing
    Li, Ruiqian
    Gao, Tian
    Li, Shiying
    Yu, Jingyi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (07) : 2257 - 2268
  • [39] Passive Non-Line-of-Sight Imaging With Light Transport Modulation
    Zhang, Jiarui
    Geng, Ruixu
    Du, Xiaolong
    Chen, Yan
    Li, Houqiang
    Hu, Yang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 410 - 424
  • [40] The role of Wigner Distribution Function in Non-Line-of-Sight Imaging
    Liu, Xiaochun
    Velten, Andreas
    2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2020,