Computing optimum Bayesian confidence interval with applications

被引:0
|
作者
Gewali, LP [1 ]
Singh, AK [1 ]
Ntafos, S [1 ]
机构
[1] Univ Nevada, Las Vegas, NV 89154 USA
关键词
computational geometry; multi-modal polygon; confidence coefficients; posterior probability distribution;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computing a Bayesian confidence interval-of an unknown parameter of a probability distribution is an important problem in the interface of applied statistics and computer science. When the functional form of the posterior probability distribution is known, confidence interval is computed by using 'equal-tail' method which is not always optimal. We present algorithms for computing optimum alpha-confidence interval when the distribution can be modeled by a polygon. We investigate the properties of optimum solutions and present an O(n log k) algorithm to compute alpha-confidence intervals, where n is the number of vertices in the polygon and k is its modality.
引用
收藏
页码:421 / 424
页数:4
相关论文
共 50 条
  • [31] OPTIMUM 2-SIDED CONFIDENCE-INTERVAL FOR THE LOCATION PARAMETER OF THE EXPONENTIAL-DISTRIBUTION
    KECECIOGLU, D
    LI, DJ
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 1985, 13 (01) : 1 - 10
  • [32] Soft Computing Applications for Optimum Rock Fragmentation: An Advanced Overview
    A. I. Lawal
    B. Adebayo
    T. B. Afeni
    I. A. Okewale
    E. O. Ajaka
    J. O. Amigun
    V. A. Akinbinu
    W. O. Apena
    Geotechnical and Geological Engineering, 2024, 42 : 859 - 880
  • [33] Maximal confidence intervals of the interval-valued belief structure and applications
    Su, Zhi-gang
    Wang, Pei-hong
    Yu, Xiang-jun
    Lv, Zhen-zhong
    INFORMATION SCIENCES, 2011, 181 (09) : 1700 - 1721
  • [34] Confidence interval procedures for system reliability and applications to competing risks models
    Yili Hong
    William Q. Meeker
    Lifetime Data Analysis, 2014, 20 : 161 - 184
  • [36] Interpreting a confidence interval
    Dupay, A
    Guillaume, JC
    ANNALES DE DERMATOLOGIE ET DE VENEREOLOGIE, 2004, 131 (02): : 220 - 220
  • [37] Accurate Confidence and Bayesian Interval Estimation for Non-centrality Parameters and Effect Size Indices
    Kang, Kaidi
    Jones, Megan T.
    Armstrong, Kristan
    Avery, Suzanne
    McHugo, Maureen
    Heckers, Stephan
    Vandekar, Simon
    PSYCHOMETRIKA, 2023, 88 (01) : 253 - 273
  • [38] Bayesian confidence interval for the risk ratio in a correlated 2 x 2 table with structural zero
    Bai, Peng
    Gan, Wen
    Shi, Lei
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (12) : 2805 - 2817
  • [39] Accurate Confidence and Bayesian Interval Estimation for Non-centrality Parameters and Effect Size Indices
    Kaidi Kang
    Megan T. Jones
    Kristan Armstrong
    Suzanne Avery
    Maureen McHugo
    Stephan Heckers
    Simon Vandekar
    Psychometrika, 2023, 88 : 253 - 273