Node-Based Learning of Multiple Gaussian Graphical Models

被引:0
|
作者
Mohan, Karthik [1 ]
London, Palma [1 ]
Fazei, Maryan [1 ]
Witten, Daniela [2 ]
Lee, Su-In [3 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
graphical model; structured sparsity; alternating direction method of multipliers; gene regulatory network; lasso; multivariate normal; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of estimating high-dimensional Gaussian graphical models corresponding to a single set of variables under several distinct conditions. This problem is motivated by the task of recovering transcriptional regulatory networks on the basis of gene expression data containing heterogeneous samples, such as different disease states, multiple species, or different developmental stages. We assume that most aspects of the conditional dependence networks are shared, but that there are some structured differences between them. Rather than assuming that similarities and differences between networks are driven by individual edges, we take a node-based approach, which in many cases provides a more intuitive interpretation of the network differences. We consider estimation under two distinct assumptions: (1) differences between the K networks are due to individual nodes that are perturbed across conditions, or (2) similarities among the K networks are due to the presence of common hub nodes that are shared across all K networks. Using a row-column overlap norm penalty function, we formulate two convex optimization problems that correspond to these two assumptions. We solve these problems using an alternating direction method of multipliers algorithm, and we derive a set of necessary and sufficient conditions that allows us to decompose the problem into independent subproblems so that our algorithm can be scaled to high-dimensional settings. Our proposal is illustrated on synthetic data, a webpage data set, and a brain cancer gene expression data set.
引用
收藏
页码:445 / 488
页数:44
相关论文
共 50 条
  • [41] On perfectness in Gaussian graphical models
    Amini, Arash A.
    Aragam, Bryon
    Zhou, Qing
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [42] Tests for Gaussian graphical models
    Verzelen, N.
    Villers, F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (05) : 1894 - 1905
  • [43] Stratified Gaussian graphical models
    Nyman, Henrik
    Pensar, Johan
    Corander, Jukka
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (11) : 5556 - 5578
  • [44] On skewed Gaussian graphical models
    Sheng, Tianhong
    Li, Bing
    Solea, Eftychia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [45] Positivity for Gaussian graphical models
    Draisma, Jan
    Sullivant, Seth
    Talaska, Kelli
    ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (05) : 661 - 674
  • [46] On a dualization of graphical Gaussian models
    Kauermann, G
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (01) : 105 - 116
  • [47] Joint estimation of multiple Gaussian graphical models across unbalanced classes
    Shan, Liang
    Kim, Inyoung
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 89 - 103
  • [48] STRUCTURAL SIMILARITY AND DIFFERENCE TESTING ON MULTIPLE SPARSE GAUSSIAN GRAPHICAL MODELS
    Liu, Weidong
    ANNALS OF STATISTICS, 2017, 45 (06): : 2680 - 2707
  • [49] Inconsistency of Cross-Validation for Structure Learning in Gaussian Graphical Models
    Lyu, Zhao
    Tai, Wai Ming
    Kolar, Mladen
    Aragam, Bryon
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [50] Learning linear non-Gaussian graphical models with multidirected edges
    Liu, Yiheng
    Robeva, Elina
    Wang, Huanqing
    JOURNAL OF CAUSAL INFERENCE, 2021, 9 (01) : 250 - 263