Existence of periodic orbits and horseshoes for mappings in a separable Banach space

被引:7
|
作者
Lian, Zeng [1 ]
Ma, Xiao [2 ]
机构
[1] Sichuan Univ, Coll Math Sci, Chengdu 610016, Sichuan, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Wu Wen Tsun Key Lab Math, Hefei, Anhui, Peoples R China
关键词
LYAPUNOV EXPONENTS; DYNAMICAL-SYSTEMS; INVARIANT-MANIFOLDS; ENTROPY; AXIOM;
D O I
10.1016/j.jde.2020.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a smooth map in a separable Banach space with a hyperbolic invariant measure, we mainly prove that positivity of the measure-theoretic entropy of the hyperbolic measure implies the existence of periodic orbits and horseshoes. This is an extension of Lian and Young's work on maps in a Hilbert space to the case of systems on a Banach space. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:11694 / 11738
页数:45
相关论文
共 50 条