Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718

被引:72
|
作者
Wen, Yaojie [1 ]
Zhang, Baicheng [1 ,2 ]
Narayan, Ramasubramanian Lakshmi [3 ]
Wang, Pei [4 ]
Song, Xu [5 ]
Zhao, Hao [6 ]
Ramamurty, Upadrasta [4 ,7 ]
Qu, Xuanhui [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Adv Mat & Technol Inst, Beijing 100083, Peoples R China
[2] Beijing Lab Metall Mat & Proc Modern Transportat, Beijing 100083, Peoples R China
[3] Indian Inst Technol Delhi, Dept Mat Sci & Engn, New Delhi 110016, India
[4] IMRE Inst Mat Res & Engn, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[5] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
[6] 3DPTek Co Ltd, Beijing, Peoples R China
[7] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Continuous functionally graded alloy; Additive manufacturing; Laser powder bed fusion; Composition; Mechanical properties; MECHANICAL-PROPERTIES; BUILD DIRECTION; STAINLESS-STEEL; HEAT-TREATMENT; MICROSTRUCTURE; ALLOY; BEHAVIOR; EVOLUTION; TI-6AL-4V; CORROSION;
D O I
10.1016/j.addma.2021.101926
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manufacturing of compositionally graded alloys (CGAs) using powder bed based additive manufacturing (AM) techniques such as Laser powder bed fusion (LPBF) poses challenges in terms of achieving homogeneity in terms of mixing of the constituent alloys, their unintended segregation and formation of unwanted brittle phases. In this study, a novel method for LPBF of large-scale compositionally graded alloy components with continuous compositional variations across their length was devised and demonstrated by producing CoCrMo-Nickel based superalloy CGA coupons that are defect-free and with smooth end-to-end variations in the composition and microstructures. The variations in the tensile properties and hardness, measured using high throughput characterization techniques, were rationalized by recourse to the different phases present in the microstructures. The method has the potential to be extended to other material combinations for creating high quality CGA components.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Tribocorrosion Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion-Based Additive Manufacturing
    Siddaiah, Arpith
    Kasar, Ashish
    Kumar, Pankaj
    Akram, Javed
    Misra, Manoranjan
    Menezes, Pradeep L.
    COATINGS, 2021, 11 (02) : 1 - 9
  • [32] The precipitation behavior effect of δ and γ" phases on mechanical properties of laser powder bed fusion Inconel 718 alloy
    Cheng, Wenhao
    Sun, Yiming
    Ma, Rui
    Wang, Yajun
    Bai, Jie
    Xue, Linan
    Yang, Jin
    Liu, Hongbing
    Song, Xiaoguo
    Tan, Caiwang
    Yuan, Qinfeng
    MATERIALS CHARACTERIZATION, 2022, 194
  • [33] The Effects of Subsystem Performance on Static and Dynamic Properties of Inconel 718 Built with Laser Powder Bed Fusion
    Kitt, Alexander L.
    Krishnan, Ajay
    Corey, Zachary
    Mohr, Luke
    Taylor, Michael
    Carter, Cameron
    Donahue, Bryan
    Zbikowski, Derek
    Mohr, William C.
    Hicks, David
    Aman, Ron
    Kiedrowski, Amy
    Nemeth, Ed
    Wolbers, Jim
    Frazier, William E.
    Haselhuhn, Amberlee S.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [34] High temperature oxidation behavior of laser powder bed fusion printed WC/Inconel 718 composites
    Wang, Rui
    Gu, Dongdong
    Zhang, Hongmei
    Guo, Meng
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (29) : 14119 - 14134
  • [35] Laser Powder Bed Fusion of Inconel 718: Residual Stress Analysis Before and After Heat Treatment
    Barros, Rafael
    Silva, Francisco J. G.
    Gouveia, Ronny M.
    Saboori, Abdollah
    Marchese, Giulio
    Biamino, Sara
    Salmi, Alessandro
    Atzeni, Eleonora
    METALS, 2019, 9 (12)
  • [36] An investigation of the plastic work to heat conversion of wrought and laser powder bed fusion manufactured Inconel 718
    Varga, John
    Kingstedt, Owen T.
    ADDITIVE MANUFACTURING, 2021, 46
  • [37] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sharma, Sunny
    Palaniappan, Karthik
    Mishra, Vagish D.
    Vedantam, Srikanth
    Murthy, H.
    Rao, Balkrishna C.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (01): : 270 - 285
  • [38] Origin of strain localization at twin boundary in Inconel 718 superalloy fabricated by laser powder bed fusion
    Li, X. C.
    Wu, Y. N.
    Yang, R.
    Zhang, Z. B.
    42ND RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: MICROSTRUCTURAL VARIABILITY: PROCESSING, ANALYSIS, MECHANISMS AND PROPERTIES, 2022, 1249
  • [39] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sunny Sharma
    Karthik Palaniappan
    Vagish D. Mishra
    Srikanth Vedantam
    H. Murthy
    Balkrishna C. Rao
    Metallurgical and Materials Transactions A, 2023, 54 : 270 - 285
  • [40] Impact of process parameters on the dynamic behavior of Inconel 718 fabricated via laser powder bed fusion
    Abruzzo, Michele
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Romoli, Luca
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (7-8): : 3655 - 3669