Cellulose-based hydrogels as body water retainers

被引:27
|
作者
Sannino, A
Esposito, A
Nicolais, L
Del Nobile, MA
Giovane, A
Balestrieri, C
Esposito, R
Agresti, M
机构
[1] Univ Naples Federico II, Dept Mat & Prod Engn, I-80125 Naples, Italy
[2] Natl Res Council, Inst Composite Mat Technol, I-80125 Naples, Italy
[3] Univ Naples 2, Dept Biochem & Biophys, I-80138 Naples, Italy
关键词
D O I
10.1023/A:1008980629714
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this work the possibility of using hydrogels as body water retainers for a therapeutic aid in pathologies such as oedemas of various origins was explored. For such a purpose, the material requires a good compatibility and a controlled swelling capacity without altering the body electrolyte homeostasis. The hydrogel was designed to meet the swelling requirements with the physiological constraints and its biocompatibility was assessed either in vitro or in vivo. Absorption tests were performed in order to define the swelling behavior by varying the pH and ion content of the external solution. The hydrogel swelling capacity was assessed in the presence of various solvents, in order to evaluate its absorption capacity in solutions similar to biological fluids. In addition, the capacity of the gel to modify electrolyte homeostasis by adsorbing ions such as calcium, potassium and sodium was tested. In order to assess the gel biocompatibility after contact of the hydrogel with intestinal cells, arachidonic acid relase was determined. No significant intracellular increase of free arachidonic acid was found in the cells after up to 2 h of contact with the gel. The results suggest that, as far as brief periods are concerned, the gel does not cause an inflammatory response in intestinal cells. (C) 2000 Kluwer Academic Publishers.
引用
收藏
页码:247 / 253
页数:7
相关论文
共 50 条
  • [21] Biomimetic cellulose-based superabsorbent hydrogels for treating obesity
    Marta Madaghiele
    Christian Demitri
    Ivo Surano
    Alessandra Silvestri
    Milena Vitale
    Eliana Panteca
    Yishai Zohar
    Maria Rescigno
    Alessandro Sannino
    Scientific Reports, 11
  • [22] High efficiency antimicrobial cellulose-based nanocomposite hydrogels
    Abou-Yousef, Hussein
    Kamel, Samir
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (31)
  • [23] Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels
    Raucci, Maria Grazia
    Alvarez-Perez, Marco Antonio
    Demitri, Christian
    Sannino, Alessandro
    Ambrosio, Luigi
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2012, 10 (03) : 302 - 307
  • [24] Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity
    Peng, Na
    Wang, Yanfeng
    Ye, Qifa
    Liang, Lei
    An, Yuxing
    Li, Qiwei
    Chang, Chunyu
    CARBOHYDRATE POLYMERS, 2016, 137 : 59 - 64
  • [25] APPLICATION OF CHITOSAN IN THE FORMULATION OF METHYL CELLULOSE-BASED HYDROGELS
    Szczeshiak, Maria
    Grimling, Bozena
    Meier, Jan
    Pluta, Janusz
    PROGRESS ON CHEMISTRY AND APPLICATION OF CHITIN AND ITS DERIVATIVES, 2014, 19 : 139 - 144
  • [26] Formulation and release of alaptide from cellulose-based hydrogels
    Sklenar, Zbynek
    Vitkova, Zuzana
    Herdova, Petra
    Horackova, Katerina
    Simunkova, Veronika
    ACTA VETERINARIA BRNO, 2012, 81 (03) : 301 - 306
  • [27] Cellulose-based hydrogels: Present status and application prospects
    Chang, Chunyu
    Zhang, Lina
    CARBOHYDRATE POLYMERS, 2011, 84 (01) : 40 - 53
  • [28] Rice straw derived cellulose-based hydrogels synthesis and applications as water reservoir system
    Kadry, Ghada
    El-Gawad, Heba A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [29] Recent Advances in Cellulose-Based Hydrogels: Food Applications
    Nath, Pinku Chandra
    Debnath, Shubhankar
    Sharma, Minaxi
    Sridhar, Kandi
    Nayak, Prakash Kumar
    Inbaraj, Baskaran Stephen
    FOODS, 2023, 12 (02)
  • [30] Cellulose-based hydrogels towards an antibacterial wound dressing
    Guamba, Esteban
    Vispo, Nelson Santiago
    Whitehead, Daniel C. C.
    Singh, Ajaya Kumar
    Santos-Oliveira, Ralph
    Niebieskikwiat, Dario
    Zamora-Ledezma, Camilo
    Alexis, Frank
    BIOMATERIALS SCIENCE, 2023, 11 (10) : 3461 - 3468