Lanthanum-strontium manganites for magnetic nanohyperthermia: Fine tuning of parameters by substitutions in lanthanum sublattice

被引:18
|
作者
Shlapa, Yulia [1 ]
Solopan, Sergii [1 ]
Bodnaruk, Andrii [2 ]
Kulyk, Mykola [2 ]
Kalita, Viktor [2 ]
Tykhonenko-Polishchuk, Yulia [3 ]
Tovstolytkin, Alexandr [3 ]
Zinchenko, Victor [4 ]
Belous, Anatolii [1 ]
机构
[1] NAS Ukraine, VI Vernadskii Inst Gen & Inorgan Chem, 32-34 Palladina Ave, UA-03680 Kiev, Ukraine
[2] NAS Ukraine, Inst Phys, 46 Nauky Ave, UA-03028 Kiev, Ukraine
[3] NAS Ukraine, Inst Magnetism, 36b Vernadsky Ave, UA-03680 Kiev, Ukraine
[4] NAS Ukraine, AV Bogatsky Phys Chem Inst, 86 Lustdorfska Doroga Str, UA-65080 Odessa, Ukraine
关键词
Magnetic nanohyperthermia; Manganite nanoparticles; Crystalline perovskite structure; Magnetization; Curie temperature; Specific loss power; FERRITE NANOPARTICLES; HYPERTHERMIA; MAGNETORESISTANCE; FLUIDS; SR;
D O I
10.1016/j.jallcom.2017.01.222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ln-doped La0.7-x Ln(x)Sr(0.3)MnO(3) (Ln Nd and Sm) nanoparticles were synthesized via sol-gel method with further heat treatment at 800 degrees C. Crystallographic, magnetic and calorimetric properties of the obtained nanoparticles have been studied. According to X-ray data, all particles have crystalline perovskite structure and lattice cell volume decreases with growing Ln content. It follows from magnetostatic measurements that the increase in Ln content results in lowering Curie temperature and reduction of room-temperature magnetization. Calorimetric studies show that the action of an external alternating magnetic field causes the effective heating of nanoparticles at temperatures lower than Curie temperature, while heating efficiency strongly weakens upon a transition into paramagnetic state. Thus, fine tuning of the Curie temperature of nanoparticles allows controlling the maximal temperature achieved during the heating, which is important for application of these materials as mediators of self-controlled magnetic nanohyperthermia. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [21] Phase behavior of lanthanum strontium manganites
    Zheng, F
    Pederson, LR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (08) : 2810 - 2816
  • [22] THE CRYSTAL STRUCTURE OF LANTHANUM STRONTIUM MANGANITES
    HARWOOD, MG
    ACTA CRYSTALLOGRAPHICA, 1954, 7 (10): : 641 - 641
  • [23] Studies on strontium substituted lanthanum manganites
    Bisbal, R.
    De Leal, C.
    Zambrano, A.
    Ng Lee, Y.
    Revista de la Facultad de Ingenieria, 2001, 16 (02): : 61 - 67
  • [24] COHERENCE EFFECTS IN THE SPIN RELAXATION OF LANTHANUM-STRONTIUM CERAMICS
    KATAEV, VE
    KUKOVITSKII, EF
    TALANOV, YI
    TEITELBAUM, GB
    JETP LETTERS, 1988, 48 (08) : 476 - 480
  • [25] Effect of cobalt on the magnetic properties and temperature coefficient of resistance for lanthanum-strontium manganite
    I. González-García
    A. M. Bolarín-Miró
    O. Rosales-González
    J. C. Aguirre-Espinosa
    C. A. Cortés-Escobedo
    F. Sánchez-De Jesús
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [26] Effect of cobalt on the magnetic properties and temperature coefficient of resistance for lanthanum-strontium manganite
    Gonzalez-Garcia, I.
    Bolarin-Miro, A. M.
    Rosales-Gonzalez, O.
    Aguirre-Espinosa, J. C.
    Cortes-Escobedo, C. A.
    Sanchez-De Jesus, F.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (29)
  • [28] Giant baroresistance effect in lanthanum-strontium manganite nanopowder compacts
    Liedienov, N. A.
    Fesych, I. V.
    Prokopenko, V. K.
    Pogrebnyak, V. G.
    Pashchenko, A. V.
    Levchenko, G. G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [29] Magnetic transitions and electrical transport in Bi-doped lanthanum strontium manganites
    1600, Institute for Low Temperature Physics and Engineering (40):
  • [30] Magnetic transitions and electrical transport in Bi-doped lanthanum strontium manganites
    Ahmed, A. M.
    Mohamed, H. F.
    Soka, Martin
    LOW TEMPERATURE PHYSICS, 2014, 40 (05) : 418 - 422