Neuro genetic fuzzy system for Gain Scheduling adaptive control design

被引:0
|
作者
Serra, Ginalber L. O. [1 ]
Bottura, Celso P. [1 ]
机构
[1] Univ Estadual Campinas, Intelligent Syst & Control Lab, FEEC, DMCSI, Av Albert Einstein 400, Campinas, SP, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a Gain Scheduling adaptive control scheme based on fuzzy systems, neural networks and genetic algorithms: an optimal fuzzy M controller is developed, by a genetic algorithm, according to some design specifications, and a neural network is designed to learn and tune on-line the fuzzy controller parameters at different operating points from ones used in the learning process. Simulation results are shown to demonstrate the efficiency of the proposed structure for DC servomotor adaptive speed control design.
引用
收藏
页码:942 / 947
页数:6
相关论文
共 50 条
  • [21] Adaptive fuzzy-neuro control of DC drive system
    Jaszczak, Krzysztof
    Orlowska-Kowalska, Teresa
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL III: INDUSTRIAL AUTOMATION AND CONTROL, 2004, : 55 - 62
  • [22] Design of an Adaptive Fuzzy Sliding Mode Control with Neuro-Fuzzy system for control of a differential drive wheeled mobile robot
    Tilahun, Aderajew Ashagrie
    Desta, Tilahun Weldcherkos
    Salau, Ayodeji Olalekan
    Negash, Lebsework
    COGENT ENGINEERING, 2023, 10 (02):
  • [23] A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm
    Varnamkhasti, M. Jalali
    Hassan, Nasruddin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 793 - 796
  • [24] Fuzzy gain scheduling for flight control
    Bergsten, P
    Persson, M
    Iliev, B
    IECON 2000: 26TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4: 21ST CENTURY TECHNOLOGIES AND INDUSTRIAL OPPORTUNITIES, 2000, : 271 - 276
  • [25] A Design of Equivalent PID Structure Control using Fuzzy Gain Scheduling
    Kang, Chang-Soon
    Hyun, Chang-Ho
    Kim, Yong-Tae
    Baek, Jaeho
    Park, Mignon
    2013 10TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2013, : 354 - 356
  • [26] Design of neuro fuzzy fault tolerant control using an adaptive observer
    Anita, R
    Umamaheswari, B
    Viswanathan, B
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2001, 25 (B3): : 453 - 462
  • [27] Design of gain scheduling adaptive control for continuous stirred tank reactor
    Anbu, S.
    Jaya, N.
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2014, 8 (02) : 141 - 157
  • [28] Design Pattern Recognition by Using Adaptive Neuro Fuzzy Inference System
    Alhusain, Sultan
    Coupland, Simon
    John, Robert
    Kavanagh, Maria
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 581 - 587
  • [29] An accurate optical gain model using adaptive neuro-fuzzy inference system
    Celebi, F. V.
    Altindag, T.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2009, 3 (10): : 975 - 977
  • [30] Adaptive Genetic Neuro-Fuzzy Attitude Control for a Fixed Wing UAV
    de Oliveira, Hugo Andrade
    Ferreira Rosa, Paulo Fernando
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2017, : 726 - 731