Largest and smallest tours and convex hulls for imprecise points

被引:0
|
作者
Loffler, Maarten [1 ]
van Kreveld, Marc [1 ]
机构
[1] Univ Utrecht, Inst Informat & Comp Sci, NL-3508 TC Utrecht, Netherlands
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Assume that a set of imprecise points is given, where each point is specified by a region in which the point may lie. We study the problem of computing the smallest and largest possible tours and convex hulls, measured by length, and in the latter case also by area. Generally we assume the imprecision region to be a square, but we discuss the case where it is a segment or circle as well. We give polynomial time algorithms for several variants of this problem, ranging in running time from O(n) to O(n(13)), and prove NP-hardness for some geometric problems on imprecise points.
引用
收藏
页码:375 / 387
页数:13
相关论文
共 50 条
  • [21] CONVEX HULLS OF POINTS DISTRIBUTED BY ROTATIONAL SYMMETRY
    CARNAL, H
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (02): : 168 - &
  • [22] Largest Convex Hulls for Constant Size, Convex-Hull Disjoint Clusters
    Tan, Xuehou
    Chen, Rong
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 128 - 139
  • [23] About the smallest circumscribed and the largest inscribed ellipse of a convex area
    Behrend, Felix
    MATHEMATISCHE ANNALEN, 1938, 115 : 379 - 411
  • [24] A fully polynomial time approximation scheme for the smallest diameter of imprecise points
    Keikha, Vahideh
    Loffler, Maarten
    Mohades, Ali
    THEORETICAL COMPUTER SCIENCE, 2020, 814 : 259 - 270
  • [25] Voronoi Diagrams and Convex Hulls of Random Moving Points
    R. A. Dwyer
    Discrete & Computational Geometry, 2000, 23 : 343 - 365
  • [26] Computing convex hulls and counting integer points with polymake
    Assarf B.
    Gawrilow E.
    Herr K.
    Joswig M.
    Lorenz B.
    Paffenholz A.
    Rehn T.
    Mathematical Programming Computation, 2017, 9 (1) : 1 - 38
  • [27] Voronoi diagrams and convex hulls of random moving points
    Dwyer, RA
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (03) : 343 - 365
  • [28] Some properties of convex hulls of integer points contained in general convex sets
    Santanu S. Dey
    Diego A. Morán R.
    Mathematical Programming, 2013, 141 : 507 - 526
  • [29] CONVEX HULLS AND EXTREME POINTS OF FAMILIES OF STARLIKE AND CONVEX MAPPINGS - PRELIMINARY REPORT
    BRICKMAN, L
    WILKEN, DR
    HALLENBECK, DJ
    MACGREGOR, TH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A581 - +
  • [30] Some properties of convex hulls of integer points contained in general convex sets
    Dey, Santanu S.
    Moran R, Diego A.
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 507 - 526