The global convergence of augmented Lagrangian methods based on NCP function in constrained nonconvex optimization

被引:4
|
作者
Wu, H. X. [2 ]
Luo, H. Z. [1 ]
Li, S. L. [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconvex optimization; Constrained optimization; Augmented Lagrangian methods; Convergence to KKT point; Degenerate point; ZERO DUALITY GAP; MULTIPLIER METHOD; GENERAL CONSTRAINTS; SADDLE-POINTS; ALGORITHM; CONVEXIFICATION; EXISTENCE;
D O I
10.1016/j.amc.2008.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the global convergence properties of the primal-dual method using a class of augmented Lagrangian functions based on NCP function for inequality constrained nonconvex optimization problems. We construct four modified augmented Lagrangian methods based on different algorithmic strategies. We show that the convergence to a KKT point or a degenerate point of the original problem can be ensured without requiring the boundedness condition of the multiplier sequence. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 50 条
  • [21] A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    Wang, Hairong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (01) : 388 - 420
  • [22] Local convergence of augmented Lagrangian methods for composite optimization
    Kan, C.
    Bi, R.
    Song, W.
    OPTIMIZATION, 2024,
  • [23] Rate-improved Inexact Augmented Lagrangian Method for Constrained Nonconvex Optimization
    Li, Zichong
    Chen, Pin-Yu
    Liu, Sijia
    Lu, Songtao
    Xu, Yangyang
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [24] Convergence of Augmented Lagrangian Methods for Composite Optimization Problems
    Hang, Nguyen Thi Van
    Sarabi, Ebrahim
    MATHEMATICS OF OPERATIONS RESEARCH, 2025,
  • [25] A Stochastic Augmented Lagrangian Equality Constrained-Based Algorithm for Global Optimization
    Rocha, Ana Maria A. C.
    Fernandes, Edite M. G. P.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 967 - 970
  • [26] A First-Order Primal-Dual Method for Nonconvex Constrained Optimization Based on the Augmented Lagrangian
    Zhu, Daoli
    Zhao, Lei
    Zhang, Shuzhong
    MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (01) : 125 - 150
  • [27] GLOBAL CONVERGENCE OF SPLITTING METHODS FOR NONCONVEX COMPOSITE OPTIMIZATION
    Li, Guoyin
    Pong, Ting Kei
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2434 - 2460
  • [28] On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems
    Magnusson, Sindri
    Weeraddana, Pradeep Chathuranga
    Rabbat, Michael G.
    Fischione, Carlo
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2016, 3 (03): : 296 - 309
  • [29] Numerical study of augmented Lagrangian algorithms for constrained global optimization
    Rocha, Ana Maria A. C.
    Fernandes, Edite M. G. P.
    OPTIMIZATION, 2011, 60 (10-11) : 1359 - 1378
  • [30] Nonlinear constrained production optimization based on augmented Lagrangian function and stochastic gradient
    Zhang, Kai
    Zhang, Xiaoming
    Ni, Wei
    Zhang, Liming
    Yao, Jun
    Li, Lixin
    Yan, Xia
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2016, 146 : 418 - 431