Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface

被引:26
|
作者
Allan, Daniel B. [1 ]
Firester, Daniel M. [1 ]
Allard, Victor P. [1 ]
Reich, Daniel H. [1 ]
Stebe, Kathleen J. [2 ]
Leheny, Robert L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Univ Penn, Dept Biomol & Chem Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
STRUCTURAL CONFORMATION; RHEOLOGICAL PROPERTIES; ACTIVE MICRORHEOLOGY; AIR/WATER INTERFACE; BROWNIAN DYNAMICS; SURFACE RHEOLOGY; PROTEIN; DRAG; VISCOELASTICITY; DENATURATION;
D O I
10.1039/c4sm00484a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase.
引用
收藏
页码:7051 / 7060
页数:10
相关论文
共 50 条
  • [31] Structural conformation of lysozyme layers at the air/water interface studied by neutron reflection
    Lu, JR
    Su, TJ
    Thomas, RK
    Penfold, J
    Webster, J
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1998, 94 (21): : 3279 - 3287
  • [32] Archaeal lipids forming a low energy-surface on air-water interface
    Kitano, T
    Onoue, T
    Yamauchi, K
    CHEMISTRY AND PHYSICS OF LIPIDS, 2003, 126 (02) : 225 - 232
  • [33] Determination of orientation of amphiphilic molecules at the air-water interface by nonlinear optics
    Kim, D
    Zhuang, X
    Miranda, P
    Shen, YR
    KOREA POLYMER JOURNAL, 1998, 6 (05): : 374 - 380
  • [34] Phase transition in adsorption layers at the air-water interface: Bridging to Langmuir monolayers
    Vollhardt, D
    Melzer, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (17): : 3370 - 3375
  • [35] Three-dimensional structure of the copper porphyrazine layers at the air-water interface
    Valkova, L
    Borovkov, N
    Pisani, M
    Rustichelli, F
    THIN SOLID FILMS, 2001, 401 (1-2) : 267 - 272
  • [36] Hydroxyzine, promethazine and thioridazine interaction with phospholipid monomolecular layers at the air-water interface
    Pinto, LDA
    Malheiros, SVP
    Lino, ACS
    de Paula, E
    Perillo, MA
    BIOPHYSICAL CHEMISTRY, 2006, 119 (03) : 247 - 255
  • [37] Effect of particle hydrophobicity on the properties of silica particle layers at the air-water interface
    Safouane, M.
    Langevin, D.
    Binks, B. P.
    LANGMUIR, 2007, 23 (23) : 11546 - 11553
  • [38] Coalescence of air bubbles at air-water interface
    Ghosh, P
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A7): : 849 - 854
  • [39] Mechanical properties of interfacial films formed by lysozyme self-assembly at the air-water interface
    Malcolm, Andrew S.
    Dexter, Annette F.
    Middelberg, Anton P. J.
    LANGMUIR, 2006, 22 (21) : 8897 - 8905
  • [40] Monolayers of γ-globulin at the air-water interface
    Gálvez-Ruiz, MJ
    Birdi, KS
    COLLOID AND POLYMER SCIENCE, 1999, 277 (11) : 1083 - 1086