Deep Learning Based Classification System for Identifying Weeds Using High-Resolution UAV Imagery

被引:39
|
作者
Bah, M. Dian [1 ]
Dericquebourg, Eric [2 ]
Hafiane, Adel [2 ]
Canals, Raphael [1 ]
机构
[1] Univ Orleans, PRISME EA 4229, F-45072 Orleans, France
[2] INSA Ctr Val Loire, PRISME EA 4229, F-18000 Bourges, France
来源
关键词
Weeds detection; Convolutional neural networks; Deep learning; Unmanned aerial vehicles; Precision agriculture; CROP; SEGMENTATION;
D O I
10.1007/978-3-030-01177-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, weeds is responsible for most of the agricultural yield losses. To deal with this problem Omega, farmers resort to spraying pesticides throughout the field. Such method not only requires huge quantities of herbicides but impact environment and humans health. In this paper, we propose a new vision-based classification system for identifying weeds in vegetable fields such as spinach, beet and bean by applying convolutional neural networks (CNNs) and crop lines information. In this study, we combine deep learning with line detection to enforce the classification procedure. The proposed method is applied to high-resolution Unmanned Aerial Vehicles (UAV) images of vegetables taken about 20m above the soil. We have performed an extensive evaluation of the method with real data. The results showed that the proposed method of weeds detection was effective in different crop fields. The overall precision for the beet, spinach and bean is respectively of 93%, 81% and 69%.
引用
收藏
页码:176 / 187
页数:12
相关论文
共 50 条
  • [31] Multiple objects tracking in the UAV system based on hierarchical deep high-resolution network
    Huang, Wei
    Zhou, Xiaoshu
    Dong, Mingchao
    Xu, Huaiyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) : 13911 - 13929
  • [32] Vegetation classification model based on high-resolution satellite imagery
    Chen Junying
    Tian Qingjiu
    REMOTE SENSING OF THE ENVIRONMENT: 15TH NATIONAL SYMPOSIUM ON REMOTE SENSING OF CHINA, 2006, 6200
  • [33] Multiple objects tracking in the UAV system based on hierarchical deep high-resolution network
    Wei Huang
    Xiaoshu Zhou
    Mingchao Dong
    Huaiyu Xu
    Multimedia Tools and Applications, 2021, 80 : 13911 - 13929
  • [34] High-Resolution Imagery Classification Based on Different Levels of Information
    Li, Erzhu
    Samat, Alim
    Liu, Wei
    Lin, Cong
    Bai, Xuyu
    REMOTE SENSING, 2019, 11 (24)
  • [35] Identifying reservoirs in northwestern Iran using high-resolution satellite images and deep learning
    Shi, Kaidan
    Su, Yanan
    Xu, Jinhao
    Sui, Yijie
    He, Zhuoyu
    Hu, Zhongyi
    Li, Xin
    Vereecken, Harry
    Feng, Min
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (03): : 922 - 933
  • [36] High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data
    Jiang, Yufeng
    Zhang, Li
    Yan, Min
    Qi, Jianguo
    Fu, Tianmeng
    Fan, Shunxiang
    Chen, Bowei
    REMOTE SENSING, 2021, 13 (08)
  • [37] Deep learning strategies for scalable analysis of high-resolution brain imagery
    Mazzamuto, Giacomo
    Orsini, Francesco
    Roffilli, Matteo
    Frasconi, Paolo
    Pavone, Francesco S.
    Silvestri, Ludovico
    ADVANCES IN MICROSCOPIC IMAGING II, 2019, 11076
  • [38] Deep multiple instance learning for airplane detection in high-resolution imagery
    Mohammad Reza Mohammadi
    Machine Vision and Applications, 2021, 32
  • [39] Deep multiple instance learning for airplane detection in high-resolution imagery
    Mohammadi, Mohammad Reza
    MACHINE VISION AND APPLICATIONS, 2021, 32 (01)
  • [40] U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery
    Giang, Tuan Linh
    Dang, Kinh Bac
    Toan Le, Quang
    Nguyen, Vu Giang
    Tong, Si Son
    Pham, Van-Manh
    IEEE ACCESS, 2020, 8 : 186257 - 186273