Simple Surfactant Concentration-Dependent Shape Control of Polyhedral Fe3O4 Nanoparticles and Their Magnetic Properties

被引:11
|
作者
Ge, Wanyin [1 ]
Sato, Ryota [1 ]
Wu, Hsin-Lun [1 ]
Teranishi, Toshiharu [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
关键词
Fe3O4; nanoparticles; shape control; shape-dependent magnetic properties; size control; ONE-POT SYNTHESIS; NANOCRYSTALS; MORPHOLOGY; ANISOTROPY; GROWTH; MICROSTRUCTURE; ALPHA-FE2O3; NANOWIRES; NANORODS; MFE2O4;
D O I
10.1002/cphc.201500605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The shape and size of monodisperse Fe3O4 nanoparticles (NPs) are controlled using a chemical solution synthesis in the presence of the surfactant cetylpyridinium chloride (CPC). Cubic Fe3O4 NPs surrounded by six {100} planes are obtained in the absence of CPC. Increasing the CPC content during synthesis causes the shape of the resulting Fe3O4 NPs to change from cubic to truncated cubic, cuboctahedral, truncated octahedral, and finally octahedral. During this evolution, the predominantly exposed planes of the Fe3O4 NPs vary from {100} to {111}. The shape control results from the synergistic effect of the pyridinium cations, chloride anions, and long-chain alkyl groups of CPC, which is confirmed by comparison with NPs synthesized in the presence of various related cationic surfactants. The size of the cubic Fe3O4 NPs can be tuned from 50 to 200nm, by changing the concentration of oleic acid in the reaction solution. The Fe3O4 NPs exhibit shape-dependent saturation magnetization, remanent magnetization, and coercivity.
引用
收藏
页码:3200 / 3205
页数:6
相关论文
共 50 条
  • [31] Controllable Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanoparticles
    王朱良
    马慧
    王芳
    李敏
    张利国
    许小红
    Chinese Physics Letters, 2016, 33 (10) : 111 - 115
  • [32] Magnetic Properties of Fe3O4 Nanoparticles Synthesized by Coprecipitation Method
    Linh, P. H.
    Manh, D. H.
    Phong, P. T.
    Hong, L. V.
    Phuc, N. X.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (09) : 2111 - 2115
  • [33] Al-doped Fe3O4 Nanoparticles and Their Magnetic Properties
    Xue Wang
    Chen Guo Hu
    Yi Xi
    Chuan Hui Xia
    Xiao Shan He
    Journal of Superconductivity and Novel Magnetism, 2010, 23 : 909 - 911
  • [34] Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles
    Upadhyay, Sneha
    Parekh, Kinnari
    Pandey, Brajesh
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 678 : 478 - 485
  • [35] Al-doped Fe3O4 Nanoparticles and Their Magnetic Properties
    Wang, Xue
    Hu, Chen Guo
    Xi, Yi
    Xia, Chuan Hui
    He, Xiao Shan
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2010, 23 (06) : 909 - 911
  • [36] Influence of Heavy Ions on the Magnetic Properties of Fe3O4 Nanoparticles
    Darziyeva, T. A.
    Alekperov, E. Sh.
    Jabarov, S. H.
    Mirzayev, M. N.
    INTEGRATED FERROELECTRICS, 2023, 232 (01) : 127 - 133
  • [37] Controllable Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanoparticles
    Wang, Zhu-Liang
    Ma, Hui
    Wang, Fang
    Li, Min
    Zhang, Li-Guo
    Xu, Xiao-Hong
    CHINESE PHYSICS LETTERS, 2016, 33 (10)
  • [38] Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles
    Alveroglu, E.
    Sozeri, H.
    Baykal, A.
    Kurtan, U.
    Senel, M.
    JOURNAL OF MOLECULAR STRUCTURE, 2013, 1037 : 361 - 366
  • [39] Green Synthesis of Fe3O4 Nanoparticles and Survey their Magnetic Properties
    Safari, Javad
    Zarnegar, Zohre
    Hekmatara, Hoda
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2016, 46 (07) : 1047 - 1052
  • [40] Magnetic Properties of Gd-Doped Fe3O4 Nanoparticles
    Apostolova, Iliana
    Apostolov, Angel
    Wesselinowa, Julia
    APPLIED SCIENCES-BASEL, 2023, 13 (11):