Controllability of Volterra-Fredholm type systems in Banach spaces

被引:61
|
作者
Hernandez, Eduardo [1 ]
O'Regan, Donal [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, ICMC, BR-13560970 Sao Carlos, SP, Brazil
[2] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
Exact controllability; Abstract control systems; INTEGRODIFFERENTIAL-SYSTEMS; DIFFERENTIAL-INCLUSIONS; INFINITE DELAY;
D O I
10.1016/j.jfranklin.2008.08.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show the results in Chalishajar [Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst. 344(1) (2007) 12-21] and Chang and Chalishajar [Controllability of mixed Volterra-Fredholm type integro-differential systems in Banach space, J. Franklin Inst., doi:10.1016/j. jfranklin.2008.02.002] are only valid for ordinary differential control systems. As a result the examples provided cannot be recovered as applications of the abstract results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [21] Controllability of functional differential systems of Sobolev type in Banach spaces
    Balachandran, K
    Dauer, JP
    KYBERNETIKA, 1998, 34 (03) : 349 - 357
  • [22] A Collocation Method for Mixed Volterra-Fredholm Integral Equations of the Hammerstein Type
    Micula, Sanda
    MATHEMATICS, 2022, 10 (17)
  • [23] Generalized Nonlinear Volterra-Fredholm Type Integral Inequality with Two Variables
    Lu, Yusong
    Wang, Wu-Sheng
    Zhou, Xiaoliang
    Huang, Yong
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [24] Generalized nonlinear Volterra-Fredholm type sum-difference inequality
    Qin, Yongzhou
    Wang, Wu-Sheng
    COMPUTER AND INFORMATION TECHNOLOGY, 2014, 519-520 : 887 - 890
  • [25] A Class of Volterra-Fredholm Type Difference Inequality and Its Application in Engineering
    Luo, Ricai
    Wang, Wu-Sheng
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (07): : 74 - 80
  • [26] Controllability of integrodifferential systems in Banach spaces
    Balachandran, K.
    Sakthivel, R.
    2001, Elsevier Inc. (118): : 63 - 71
  • [27] A Generalized Nonlinear Volterra-Fredholm Type Integral Inequality and Its Application
    Zhao, Limian
    Wu, Shanhe
    Wang, Wu-Sheng
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [28] ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT
    Bacotiu, Claudia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (01): : 29 - 41
  • [29] Controllability of linear systems in Banach spaces
    Chen, PN
    Qin, HS
    SYSTEMS & CONTROL LETTERS, 2002, 45 (02) : 155 - 161
  • [30] Controllability of integrodifferential systems in Banach spaces
    Balachandran, K
    Sakthivel, R
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 118 (01) : 63 - 71