Implementation of first-order and second-order microwave differentiators

被引:47
|
作者
Hsue, CW [1 ]
Tsai, LC [1 ]
Chen, KL [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei 106, Taiwan
关键词
equal-length line; microwave differentiator; Z-transforms;
D O I
10.1109/TMTT.2004.827015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simple and accurate formulations are employed to represent discrete-time infinite impulse response processes of both first- and second-order differentiators in the Z-domain. These formulations, in conjunction with the representations of transmission-line elements in the Z-domain, lead to transmission-line configurations that are eligible for wide-band microwave differentiators. Both the first- and second-order differentiators in microstrip circuits are implemented to verify this method. The experimental results are in good agreement with simulation values.
引用
收藏
页码:1443 / 1448
页数:6
相关论文
共 50 条
  • [31] First-order or second-order kinetics? A Monte Carlo answer
    Tellinghuisen, J
    JOURNAL OF CHEMICAL EDUCATION, 2005, 82 (11) : 1709 - 1714
  • [32] Are there separate first-order and second-order mechanisms for orientation discrimination?
    Morgan, MJ
    Mason, AJS
    Baldassi, S
    VISION RESEARCH, 2000, 40 (13) : 1751 - 1763
  • [33] First-order versus second-order phase transformation in AuZn
    Sanati, M.
    Albers, R. C.
    Lookman, T.
    Saxena, A.
    PHYSICAL REVIEW B, 2013, 88 (02)
  • [34] First-order and second-order configural influences on facial expressions
    Wink, B
    Cook, F
    Johnston, RA
    Jones, CA
    PERCEPTION, 2004, 33 : 105 - 105
  • [35] Is consciousness first-order?! Processing of second-order stimuli in blindsight
    Trevethan, CT
    Sahraie, A
    PERCEPTION, 2005, 34 : 147 - 147
  • [36] A comparison of first-order and second-order transparency thresholds in stereopsis
    Langley, K.
    Fleet, D. J.
    Hibbard, P. B.
    PERCEPTION, 1998, 27 : 102 - 102
  • [37] Where First-Order and Monadic Second-Order Logic Coincide
    Elberfeld, Michael
    Grohe, Martin
    Tantau, Till
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2016, 17 (04)
  • [38] Motion aftereffect of combined first-order and second-order motion
    van der Smagt, MJ
    Verstraten, FAJ
    Vaessen, EBP
    van Londen, T
    van de Grind, WA
    PERCEPTION, 1999, 28 (11) : 1397 - 1411
  • [39] First-order and second-order classification image analysis of crowding
    Tjan, B. S.
    Nandy, A. S.
    PERCEPTION, 2006, 35 : 172 - 172
  • [40] Second-order Lagrangians admitting a first-order Hamiltonian formalism
    Rosado Maria, E.
    Munoz Masque, J.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 357 - 397