Six novel amino acid chromophores were synthesized and their spectroscopic, acid-base, and electrochemical properties are discussed in this work. In studied compounds, selected amino acid residues (L-Aspartic acid, L-Glutamic acid, L-Glutamine, L-Histidine, L-Lysine, L-Arginine) are attached to the 1-(piperazine) 9,10-anthraquinone skeleton via the amide bond between the carboxyl group of amino acid and nitrogen atom of the piperazine ring. All derivatives have been characterized using a variety of spectroscopic techniques (mass spectrometry, 1HNMR, UV-Vis, IR spectroscopy), acid-base (electrochemical and UV-Vis) titrations, and cyclic voltammetry methods. Basing on observed experimental effects, supported by quantum chemical simulations, the structure-properties links were established. They are indicative of the specific interactions within and/or in-between amino acid side groups, which are prone to form both, intra- and intermolecular hydrogen bonds as well as electrostatic interactions with the anthraquinone system. (C) 2019 Elsevier B.V. All rights reserved.