Recovering True Classifier Performance in Positive-Unlabeled Learning

被引:0
|
作者
Jain, Shantanu [1 ]
White, Martha [1 ]
Radivojac, Predrag [1 ]
机构
[1] Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A common approach in positive-unlabeled learning is to train a classification model between labeled and unlabeled data. This strategy is in fact known to give an optimal classifier under mild conditions; however, it results in biased empirical estimates of the classifier performance. In this work, we show that the typically used performance measures such as the receiver operating characteristic curve, or the precision recall curve obtained on such data can be corrected with the knowledge of class priors; i.e., the proportions of the positive and negative examples in the unlabeled data. We extend the results to a noisy setting where some of the examples labeled positive are in fact negative and show that the correction also requires the knowledge of the proportion of noisy examples in the labeled positives. Using state-of-the-art algorithms to estimate the positive class prior and the proportion of noise, we experimentally evaluate two correction approaches and demonstrate their efficacy on real-life data.
引用
收藏
页码:2066 / 2072
页数:7
相关论文
共 50 条
  • [21] Partial Optimal Transport with Applications on Positive-Unlabeled Learning
    Chapel, Laetitia
    Alaya, Mokhtar Z.
    Gasso, Gilles
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [22] Spotting Fake Reviews using Positive-Unlabeled Learning
    Li, Huayi
    Liu, Bing
    Mukherjee, Arjun
    Shao, Jidong
    COMPUTACION Y SISTEMAS, 2014, 18 (03): : 467 - 475
  • [23] Theoretical Comparisons of Positive-Unlabeled Learning against Positive-Negative Learning
    Niu, Gang
    du Plessis, Marthinus C.
    Sakai, Tomoya
    Ma, Yao
    Sugiyama, Masashi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [24] Investigating Active Positive-Unlabeled Learning with Deep Networks
    Han, Kun
    Chen, Weitong
    Xu, Miao
    AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 607 - 618
  • [25] Bootstrap Latent Prototypes for graph positive-unlabeled learning
    Liang, Chunquan
    Tian, Yi
    Zhao, Dongmin
    Li, Mei
    Pan, Shirui
    Zhang, Hongming
    Wei, Jicheng
    INFORMATION FUSION, 2024, 112
  • [26] Positive-Unlabeled Compression on the Cloud
    Xu, Yixing
    Wang, Yunhe
    Chen, Hanting
    Han, Kai
    Xu, Chunjing
    Tao, Dacheng
    Xu, Chang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Positive-Unlabeled Domain Adaptation
    Sonntag, Jonas
    Behrens, Gunnar
    Schmidt-Thieme, Lars
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 66 - 75
  • [28] GradPU: Positive-Unlabeled Learning via Gradient Penalty and Positive Upweighting
    Dai, Songmin
    Li, Xiaoqiang
    Zhou, Yue
    Ye, Xichen
    Liu, Tong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7296 - +
  • [29] PUe: Biased Positive-Unlabeled Learning Enhancement by Causal Inference
    Wang, Xutao
    Chen, Hanting
    Guo, Tianyu
    Wang, Yunhe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [30] PULNS: Positive-Unlabeled Learning with Effective Negative Sample Selector
    Luo, Chuan
    Zhao, Pu
    Chen, Chen
    Qiao, Bo
    Du, Chao
    Zhang, Hongyu
    Wu, Wei
    Cai, Shaowei
    He, Bing
    Rajmohan, Saravanakumar
    Lin, Qingwei
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8784 - 8792