STOCHASTIC GRAPH NEURAL NETWORKS

被引:0
|
作者
Gao, Zhan [1 ]
Isufi, Elvin [2 ]
Ribeiro, Alejandro [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Delft Univ Technol, Dept Intelligent Syst, Delft, Netherlands
关键词
Graph neural networks; graph filters; random link losses; convergence analysis; distributed learning; DESIGN;
D O I
10.1109/icassp40776.2020.9054424
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning among others. However, current GNN implementations assume ideal distributed scenarios and ignore link fluctuations that occur due to environment or human factors. In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly. To overcome this issue, we put forth the stochastic graph neural network (SGNN) model: a GNN where the distributed graph convolutional operator is modified to account for the network changes. Since stochasticity brings in a new paradigm, we develop a novel learning process for the SGNN and introduce the stochastic gradient descent (SGD) algorithm to estimate the parameters. We prove through the SGD that the SGNN learning process converges to a stationary point under mild Lipschitz assumptions. Numerical simulations corroborate the proposed theory and show an improved performance of the SGNN compared with the conventional GNN when operating over random time varying graphs.
引用
收藏
页码:9080 / 9084
页数:5
相关论文
共 50 条
  • [31] Torsion Graph Neural Networks
    Shen, Cong
    Liu, Xiang
    Luo, Jiawei
    Xia, Kelin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 2946 - 2956
  • [32] Graph Pointer Neural Networks
    Yang, Tianmeng
    Wang, Yujing
    Yue, Zhihan
    Yang, Yaming
    Tong, Yunhai
    Bai, Jing
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8832 - 8839
  • [33] Elastic Graph Neural Networks
    Liu, Xiaorui
    Jin, Wei
    Ma, Yao
    Li, Yaxin
    Liu, Hua
    Wang, Yiqi
    Yan, Ming
    Tang, Jiliang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [34] GRAPH RECOGNITION BY NEURAL NETWORKS
    DREYFUS, G
    ZIPPELIUS, A
    NEURAL NETWORKS FROM MODELS TO APPLICATIONS, 1989, : 483 - 492
  • [35] Introduction to Graph Neural Networks
    Liu Z.
    Zhou J.
    1600, Morgan and Claypool Publishers (14): : 1 - 127
  • [36] ConveXplainer for Graph Neural Networks
    Pereira, Tamara A.
    Nascimento, Erik Jhones F.
    Mesquita, Diego
    Souza, Amauri H.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 588 - 600
  • [37] Graph Neural Networks with Heterophily
    Zhu, Jiong
    Rossi, Ryan A.
    Rao, Anup
    Mai, Tung
    Lipka, Nedim
    Ahmed, Nesreen K.
    Koutra, Danai
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11168 - 11176
  • [38] Binary Graph Neural Networks
    Bahri, Mehdi
    Bahl, Gaetan
    Zafeiriou, Stefanos
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9487 - 9496
  • [39] Polarized Graph Neural Networks
    Fang, Zheng
    Xu, Lingjun
    Song, Guojie
    Long, Qingqing
    Zhang, Yingxue
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1404 - 1413
  • [40] Convolutional Graph Neural Networks
    Gama, Fernando
    Marques, Antonio G.
    Leus, Geert
    Ribeiro, Alejandro
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 452 - 456